Impingement in total hip replacements (THRs), including bone-on-bone impingement, can lead to complications such as dislocation and loosening. The aim of this study was to investigate how the location of the anterior inferior iliac spine (AIIS) affected the range of motion before impingement. A cohort of 25 CT scans (50 hips) were assessed and nine hips were selected with a range of AIIS locations relative to the hip joint centre. The selected CT Scans were converted to solid models (ScanIP) and THR components (DePuy Synthes) were virtually implanted (Solidworks). Flexion angles of 100⁰, 110⁰, and 120⁰ were applied to the femur, each followed by internal rotation to the point of impingement. The lateral, superior and anterior extent of the AIIS from the Centre of Rotation (CoR) of the hip was measured and its effect on the range of motion was recorded.Abstract
Objectives
Methods
Corin has developed bone conserving prosthesis (MiniHip™) to better replicate the physiological load distribution in the femur. This study assessed whether the MiniHip™ prosthesis can better match the pre-osteoarthritic head centre for patient demographics when compared to contemporary long stem devices. Leg length and offset discrepancy resulting from Total Hip Replacement (THR) is a major cause of concern for the orthopaedic community. The inability to substitute the proximal portion of the native femur with a device that suitably mimics the pre-operative offset and head height can lead to loss of abductor power, instability, lower back pain and the need for orthodoses. Contemporary devices are manufactured based on predicate studies to cater for the variations within the patient demographic. Stem variants, modular necks and heads are often provided to meet this requirement. The number of components and instruments that manufacturers are prepared to supply however is limited by cost and an unwillingness to introduce unnecessary complexity. This can restrict the ability to achieve the pre-osteoarthritic head centre for all patient morphologies. Corin has developed MiniHip™ to better replicate the physiological load distribution in the femur. This study assessed whether the MiniHip™ prosthesis can better match the pre-osteoarthritic head centre for patient demographics when compared to contemporary long stem devices.Summary Statement
Introduction
This work uses a mathematical method to correlate the forces calculated to push-on and pull off a femoral head from a stem and correlate the results of in vitro testing. This work aimed to mathematically model the force needed to disassemble the THR unit for a given assembly load. This work then compared these results with the results of an in vitro experiment. The research presented aimed to determine the assembly forces necessary to prevent movement of the head on the stem through friction. By assessing the forces necessary to push the head onto the stem securely enough to prevent any movement of the head through friction, it is likely that the fretting and corrosion of the head taper interface will be reduced.Summary
Introduction