Total Hip Arthroplasty (THA) devices are now increasingly subjected to a progressively greater range of kinematic and loading regimes from substantially younger and more active patients. In the interest of ensuring adequate THA solutions for all patient groups, THA polyethylene acetabular liner (PE Liner) wear representative of younger, heavier, and more active patients (referred to as HA in this study) warrants further understanding. Previous studies have investigated HA joint related morbidity [1]. Current or past rugby players are more likely to report osteoarthritis, osteoporosis, and joint replacement than a general population. This investigation aimed to provide a preliminary understanding of HA patient specific PE liner tribological performance during Standard Walking (SW) gait in comparison to IS0:14242-1:2014 standardized testing. Nine healthy male subjects volunteered for a gait lab-based study to collect kinematics and loading profiles. Owing to limitations in subject selection, five subjects wore a weighted jacket to increase Body Mass Index ≥30 (BMI). An induced increase in Bodyweight was capped (<30%BW) to avoid significantly effecting gait [3] (mean=11%BW). Six subjects identified as HA per BMI≥30, but with anthropometric ratios indicative of lower body fat as previously detailed by the author [2] (Waist-to-hip circumference ratio and waist circumference-to-height ratio). Three subjects identified as Normal (BMI<25). Instrumented force plate loading profiles were scaled (≈270%BW) in agreement with instrumented hip force data [4]. A previously verified THA (Pinnacle® Marathon® 36×56mm, DePuy Synthes) Finite Element Analysis wear model based on Archard's law and modified time hardening model [5] was used to predict geometrical changes due to wear and deformation, respectively (Figure 1). Subject dependent kinematic and loading conditions were sampled to generate, for both legs, 19 SW simulation runs using a central composite design of response surface method.Introduction
Materials and Methods
Hip arthroplasty is considered common to patients aged 65 and over however, both Jennings, et al., (2012) and Bergmann (2016) found THA patients are substantially younger with more patients expecting to return to preoperative activity levels. With heavier, younger, and often more active patients, devices must be able to support a more demanding loading-regime to meet patient expectations. McClung (2000) demonstrated that obese patients can display lower wear-rates with UHMWPE bearing resulting from post-operative, self-induced reduced ambulatory movement, thus questioning if obese kinematics and loading are indeed the worst-case. Current loading patterns used to test hip implants are governed by ISO 14242-1 (2014). This study aimed to characterize a heavy and active population (referred to as HA) and investigate how the gait profile may differ to the current ISO profile. A comprehensive anthropometric data set of 4082 men (Gordon, CC., et.al., 2014) was used to characterize a HA population. Obese and HA participants were classed as BMI ≥30 however HA participants were identified by applying anthropometric ratios indicative of lower body fat, namely “waist to height” (i.e. WHtR <0.6) and “waist to hip” (i.e. WHpR <0.9).Introduction
Method
Total ankle replacements (TAR) are a much debated alternative to ankle fusion for treatment of end stage arthritis. Compared with hip and knee replacements these are implanted in small numbers with less than 500 per year recorded by the joint registry for England and Wales. The small numbers are a likely result of typically low mid-term survival rates, as well as extensive contra-indications for surgery. There have been multiple generations of TARs consisting of both constrained and unconstrained designs but due to device classification pre-clinical testing has been minimal. Five Zenith (Corin Group PLC), Titanium Nitride (TiN) coated, unconstrained TARs with conventional polyethylene inserts (Figure 1) were tested in an adapted knee simulator (Simulator Solutions, UK) for six million cycles (MC). The input parameters (Figure 2) were taken from available literature as there is no recognised ISO standard in place. A parametric study with three conditions was conducted to understand the impact of kinematic inputs on the polyethylene wear rate. These conditions aimed to understand the effect of both linear wear with isolated flexion, then multidirectional motion by implementing a rotational input with and without anterior/posterior (AP) displacement. Each condition was run for two MC. Stage One: Flexion and Load Stage Two: Flexion, Load, Rotation and Displacement Stage Three: Flexion, Load and Displacement A lubricant of 25% bovine serum, 0.03% Sodium Azide solution was used to replicate the protein content of the natural joint capsule. The wear was measured gravimetrically every million cycles and surface measurements taken with a contacting profilometer.Introduction
Method
Leg length and offset discrepancy resulting from Total Hip Replacement (THR) is a major cause of concern for the orthopaedic community. The inability to substitute the proximal portion of the native femur with a device that suitably mimics the pre-operative offset and head height can lead to loss of abductor power, instability, lower back pain and the need for orthodoses (1). Contemporary devices are manufactured based on predicate studies (2–4) to cater for the variations within the patient demographic. Stem variants, modular necks and heads are often provided to meet this requirement. The number of components and instruments that manufacturers are prepared to supply however is limited by cost and an unwillingness to introduce unnecessary complexity. This can restrict their ability to achieve the pre-osteoarthritic head centre for all patient morphologies. Corin has developed bone conserving prosthesis (MiniHip™) to better replicate the physiological load distribution in the femur. This study assesses whether the MiniHip™ prosthesis can better match the pre-osteoarthritic head centre for patient demographics when compared to contemporary long stem devices. The Dorr classification is a well accepted clinical method for defining femoral endosteal morphology (5). This is often used by the surgeon to select the appropriate type and size of stem for the individual patient. It is accepted that a strong correlation exists between Flare Index (FI), characterising the thinning of cortical walls and development of ‘stove-pipe’ morphology, and age, in particular for females (Table 1) (3). A statistical model of the proximal femur was built from 30 full length femoral scans (Imorphics, UK). Minimum and maximum intramedullary measurements calculated from the statistical model were applied to relationships produced by combining Corins work with that of prior authors (Table 2) (2; 3; 6). This data was then used to generate 2D CAD models into which implants were inserted to compare the head centres achievable with a MiniHip™ device compared to those of a contemporary long stem.Introduction:
Method:
Vitamin-E has been introduced into highly-crosslinked polyethylene liners to reduce the oxidation potential of the material while maintaining low wear rates. However, little has been reported on adverse testing of the material with one test on diffused vitamin-E polyethylene [1] and no adverse tests of vitamin-E blended polyethylene reported. Adverse testing of crosslinked polyethylene has focused on the use of large diameters, the incorporation of third body particles, roughening of the counterface or severe activity [2–4]. This investigation considers the wear of vitamin-E blended highly-crosslinked polyethylene under standard and adverse conditions articulating against uncoated and chromium nitride (CrN) coated metal heads. Seven metal heads were tested against prototype ϕ52 mm 0.1 wt% vitamin-E blended highly-crosslinked polyethylene liners (Corin, UK). Three heads remained as cast double heat treated metal (MoP) while four, of similar metallurgy, were coated with CrN via electron beam physical vapour deposition (CrNoP) (Tecvac, UK) and polished to a similar surface finish. Tests were conducted for 5 million cycles (mc) under conditions described in ISO 14242–3: 2009. Alumina particles (mean size 2.4 μm) at concentrations of 0.15 mg/mL were added to the lubricant for 1 mc to consider the effect of severe head damage. Testing continued for a further 1 mc without the presence of the particles and then 3 jogging intervals (14,400 cycles each) were conducted at slow, medium and fast speeds [3]. Wear volume was determined gravimetrically for the heads and liners and fluid collected throughout the testing was analysed for cobalt concentration using graphite furnace atomic absorption spectroscopy.Introduction
Methods
Bearing surfaces of metal-on-metal (MoM) hip resurfacing devices and total hip replacements (THRs) are a known source of metallic debris. Further, large diameter heads and the high friction of a MoM joint are thought to lead to fretting and corrosion at the taper interface between modular components1. The metal debris generated can cause significant problems on the joint area2. This paper investigated fretting and corrosion of femoral head-neck junctions. Variables of the head-neck junction which may have an effect on fretting and corrosion were identified with the aim of determining the key drivers so that their risk on fretting and corrosion could be reduced through design. Additionally, a Chromium Nitride (CrN) coating was assessed to determine the effect on fretting and corrosion of coating the stem (male), head (female) or both trunnion interfaces. As there is currently no standard specification for a head-neck trunnion interface and trunnion designs vary significantly across the market, this work may lead to a positive change in the design and materials used in head-neck taper interfaces for all THR devices. Suitable head and stem combinations were identified to enable individual variables such as; coating, medial-lateral (M-L) offset, head offset and taper angle to be isolated (Figure 1 and Figure 2). For the coated components a 3 μm CrN coating was applied to trunnion using electron beam physical vapour deposition (Tecvac, Cambridge, UK). Fretting and corrosion testing was carried out in accordance with ASTM F1875-98 (2009) method II procedure B3 following assembly of the components under a 2 kN load.Introduction
Methods
Total Knee Replacement (TKR) is a highly effective treatment providing pain relief and improved function to patients experiencing advanced stage osteoarthritis. Tray fit or bone coverage is a critical design feature for both cemented and cementless designs affecting stability, load transfer and potential for infection. Many authors have attempted to characterise the relationship between the profile of the proximal tibia and gender and ethnicity1–3. As a consequence, a number of manufacturers have commercialised devices designed for specific gender and racial demographics. This study was initiated to compare the effect of the fixed minimum tibial resection depth prescribed by existing surgical instruments with that of a proportionate resection based on the size of the tibia. A dataset consisting of 30 donor scans from a US cadaver tissue bank (ScienceCare, Memphis, US) was used for this study. The dataset consisted of 12 male and 18 female specimens. Due to the limited view of the diaphysis for most scans, the natural slope of the lateral compartment was used as a guide for orienting the resection. All scans were resected with a 3° posterior slope. For the first part of this study, an equal mediolateral (ML) resection of 9.5 mm, reflecting the minimum resection for the Unity TKR tibia (Corin, UK), was performed on all specimens (Figure 1). Following this, two proportionate resection depths (13.5 mm and 6.7 mm) were calculated based on the ML relationship between the smallest and largest available Unity components (59.5 mm: 84.5 mm). Two further resection depths (11.3 mm and 8.0 mm) were calculated based on a mid size (71.0 mm). Three resection depths (8.0 mm, 9.5 mm & 11.3 mm) were applied to four medium sized specimens. In addition to this two larger specimens were resected at 9.5 mm and 13.5 mm and two smaller specimens at 6.7 mm and 9.5 mm. A grid was applied to all cut surfaces and oriented using the posterior axis. The cut surface was divided based on lines drawn at 10%, 25%, 50%, 75% and 90% of the overall ML dimension and 10%, 25%, 50%, 75% and 90% of the overall anteroposterior (AP) dimension. Measurements were taken from the medial side and recorded from the points at which lines intersected the external profile of the cut tibia (Figure 2).Introduction
Method
Wear induced osteolysis, material property degradation and oxidation remain a concern in cobalt chrome on polyethylene THR. ECIMA is a cold-irradiated, mechanically annealed, vitamin E blended HXLPE developed to maintain mechanical properties, minimise wear and improve long-term oxidation resistance. This study aimed to compare the Twelve liners (Corin, UK) underwent a 3 million cycle (mc) hip simulation. Three UHMWPE (GUR1050, Ø32 mm, γ sterilised), three HXLPE (GUR1020, Ø40 mm, 75 kGy γ, EtO sterilised) and six ECIMA (0.1 wt% vitamin E GUR1020, Ø40 mm, 120 kGy γ, mechanically annealed, EtO sterilised) liners articulated against CoCrMo femoral heads (Corin, UK). Wear testing was performed in accordance with ISO 14242 parts 1 and 2, in calf serum, with a maximum force of 3.0 kN and at a frequency of 1 Hz. Volumetric wear rate was determined gravimetrically. ASTM D638 type V specimens were machined from ECIMA material for uniaxial tension testing. Ultimate tensile strength (UTS), yield strength and elongation values were measured. These values were compared to mechanical data available for the other material types. Following completion of the ECIMA wear testing, three of the tested liners were cut in half. One half of each was subject to accelerated ageing in accordance with ASTM F2003-02, while the other half was tested as received. Each liner half was cross-sectioned and a microtome was used to section 200μm thick slices from each cross-section. Oxidation analysis was performed using a Fourier Transform Infra-red technique in accordance with ASTM F2102-01 throughout the thickness of each liner half. Average oxidation indices for each sample were determined.INTRODUCTION
METHODS