Mobile-bearing total knee arthroplasty was developed to provide low contact stress and reasonably unrestricted joint motion. We studied the results of a cementless, posterior cruciate ligament (PCL)-retaining total knee arthroplasty (TKA), with a mobile-bearing insert in rotation and anterior-posterior (AP) translation (Innex® Anterior-Posterior Glide, Zimmer). Kinematic analyses were performed on a series of 51 primary TKA. The patients’ mean age was 71±8 years at operation. Patients were studied at 23 months average follow-up with weight-bearing radiographs at full-extension, 30° flexion and maximum flexion (“lunge” position). Three dimensional position and orientation of the mobile-bearing relative to the femoral and the tibial component during flexion were determined using model-based shapematching techniques. The average weight-bearing range of implant motion was 110°±14°. In flexion, the mobile-bearing was internally rotated 3°±3° with respect to the femoral component (p<
0.0001) and the tibial tray was internally rotated 5°±7° with respect to the mobile-bearing (p<
0.0001). On average, the mobile-bearing did not translate relative to the tibial base plate from full extension to 45° flexion [0±2 mm (range −5 mm to 6 mm)]. However, the mobilebearing did translate anteriorly 1±2 mm (range −2 mm to 9 mm, p<
0.0001) between 45° flexion and maximal flexion. We conclude that the mobile-bearing insert showed a progressive increase in internal rotation during flexion. Most of this rotational mobility occurred between the mobile insert and the tibial base plate. With flexion, AP translation did occur between the femoral component and mobile-bearing, and between the mobile-bearing and tibial base plate, but mobile-bearing translation was unpredictable with this unconstrained design.