header advert
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 34 - 34
1 Mar 2017
Mueller U Lee C Thomsen M Heisel C Kretzer J
Full Access

Introduction

This study was performed to investigate the failure mechanism of one specific hip arthroplasty cup design that has shown a high clinical failure rate. The aim of this study was to identify general design problems of this polyethylene inlay.

Material and Methods

55 consecutive retrievals of a cementless screw ring (Mecron) were collected. In any case a 32 mm ceramic head was used. All implants failed due to aseptic loosening. The follow-up of the implants was 3 to 16 years. We recorded backside wear, fatigue of the polyethylene at the flanges on the outer rim and at the cup opening (32 mm inner diameter). To assess the deformation of the inlay, the smallest and the median diameter of the cup opening were measured using a 3 dimensional coordinate measuring machine (Multisensor, Mahr, Germany).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 114 - 114
1 Jan 2016
Klotz M Jaeger S Kretzer JP Beckmann N Reiner T Thomsen M Bitsch R
Full Access

As there are many reports describing avascular reactions to metal debris (ARMD) after Metal-on-Metal Hip Arthroplasty (MoMHA), the use of MoMHA, especially hip resurfacing, is decreasing worldwide. In cases of ARMD or a rise of metal ion blood levels, revision is commended even in pain free patients with a well integrated implant. The revision of a well integrated implant will cause bone loss. As most of the patients with a hip resurfacing are young and a good bone stock is desirable for further revision surgeries, the purpose of this study was to evaluate the stability of a cemented polyethylene cup in a metal hip resurfacing cup. Two different hip resurfacing systems were investigated in this study (ASR™, DePuy Orthopaedics, Leatherhead, UK; Cormet™, Corin Group, Cirencester, UK).

Six different groups were formed according to the treatment and preparation of the cement-cup-interface (table 1). Before instilling cement in groups 1, 3, 5 the surface, which was contaminated with blood, was cleaned just using a gauze bandage. In groups 2, 4, 6 saline, polyhexanid and a gauze were used to clean the surface prior to the cement application. In group one and two the polyethylene cup (PE) was cemented either into Cormet™ or ASR™, just the ASR™ was further investigated in group three to six. A monoaxial load was applied while the cup was fixed with 45 degrees inclination (group 1–4) and 90 degrees inclination (group 5, 6: rotatory stability) and the failure torque was measured. In contrast to group 1 and 2, the cement penetrated the peripheral groove of the ASR™ in groups 3–6. The mean failure torque of five tests for each group was compared between the groups and the implants.

The ASR™ showed mean failure torque of 0.1 Nm in group one, of 0.14 Nm in group two, of 56.9 Nm in group three, of 61.5 Nm in group four, of 2.96 Nm in group five and of 3.04 Nm in group six. The mean failure torque of the Cormet™ was 0.14 Nm both in groups one and two (table 2). In groups 1–6 there were no significant differences between the different preparations of the interface. Furthermore, in groups 1 and 2 there were no significant differences between the Cormet™ and the ASR™. The mean failure torque of group 4 was significant increased compared to group 3 (p=0.008).

We saw an early failure of the cement fixation due to the smooth surface of the Cormet™ and the ASR™ components in groups 1, 2, 5, 6. In contrast to other hip resurfacing cups the ASR™ has a peripheral groove, which was not cemented except in groups 3 and 4 and therefore the lever-out failure torque was significant increased in these groups. Nevertheless, the groove did not provide stability of the cement-PE compound in case of rotatory movements. In conclusion we do not recommend the use of these methods in clinical routine. The complete removal of hip resurfacing components seems to be the most reasonable procedure.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 133 - 133
1 Dec 2013
Nadorf J Thomsen M Sonntag R Reinders J Kretzer JP
Full Access

INTRODUCTION:

Good survival rates of cementless hip stems serve as motivation for further development, just like modular implant systems or short stems. New aims are worth striving for, e.g. soft tissue or bone sparing options with similar survival rates in case of short stems. Even minimal design modifications might result in complications, e.g. missing osseointegration, loosening of the implant or painful stem, as shown in the past.

One of these developments is the Biomet – GTS™ stem [Fig. 1], a hybrid between conventional cementless straight stem and potentially sparing short stem.

Aim of this biomechanical study was to analyze, if the biomechanical behavior of the stem is comparable to a clinically proofed design with respect to the stem fixation in the bone and to the mechanical behavior of the stem itself. That's why the primary stability of the GTS™ stem has been determined and subsequently was compared to the Zimmer – CLS® stem.

MATERIAL & METHODS

Four GTS™ stems and four CLS® stems were implanted standardized in eight synthetic femurs. Micromotions of the stem and the bone were measured at different sites. A high precision measuring device was used to apply two different cyclic load situations: 1. Axial torque of +/−7 Nm around the longitudinal stem axis to determine the rotational implant stability. 2. Varus-valgus-torque of +/−3, 5 Nm to determine the bending behavior of the stem. Comparing the motions of the stem and femur at different sites allowed the calculation of relative micromotions at the bone-implant-interface.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 117 - 117
1 Jun 2012
Kretzer JP Jaeger S Reinders J Jakubowitz E Thomsen M Bitsch R
Full Access

Introduction

Infection following total joint arthroplasty is a major and devastating complication. After removal of the initial prosthesis, an antibiotic-impregnated cement spacer is inserted for approx. three months. Treatment is completed by a second stage revision arthroplasty.

Up to now, spacers are produced from conventional bone cements that contain abrasive radio-opaque substances like zirconium dioxide or barium sulphate. As long as spacer wear products (cement particles containing these hard substances) are not fully removed during the final revision surgery they may enter the articulating surfaces of the revision implant leading to third body wear.

In order to reduce the formation of reactive wear particles, a special cement (Copal(r) spacem) without abrasive zirconium dioxide or barium sulphate was developed.

To date, no comparative tribological data for cement spacers have been published. Hence, we carried out a study on the wear properties of Copal(r) spacem (with and without gentamicin) in comparison to conventional bone cements (Palacos(r) R and SmartSet(r) GHV).

Material and Methods

In order to assure reproducible forms of the femoral and tibial components, silicon rubber moulds were produced and filled with the respective cement. Force-controlled simulation was carried out on an AMTI knee simulator (Figure I). The test parameters were in accordance to ISO 14243-1 with a 50% reduced axial force (partial weight bearing). Tests were carried out at 37 °C in closed chambers filled with circulating calf serum. Tests were run for 240,000 cycles (representing the average step rate during 6-8 weeks) at a frequency of 1 Hz. For wear analysis, digital photographs of the spacer were taken at the beginning and at the end of the testing period. The areas of wear scars were measured by the means of a digital image processing software.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_III | Pages 60 - 60
1 Feb 2012
Aldinger P Jung A Gatermann S Ewerbeck V Thomsen M Parsch D
Full Access

Introduction

Up to date there are only few reports in literature on the long term survival of uncemented stems. As for cemented THA, 10 year survival of at least 90% is required for any THA.

Materials and methods

We followed the first 354 consecutive implantations of an uncemented, straight femoral stem (CLS, Zimmer Inc, Warsaw, USA) in 326 patients. Mean time of follow-up evaluation was 17 years (range, 15-20 years).