The inherently high stiffness of locked plate constructs is increasingly recognized as a potential cause of deficient healing observed in patients with periarticular locked plating systems. The objective of this study is to perform a biomechanical comparison of distal femur locked plating systems. Biomechanical study using bone substitutes in a distal femur fracture model (OTA/AO 33-A3). Four different locked plate fixation systems were compared (AxSOS, LCP, PERI-LOC, POLYAX). Eight bone implant constructs of each plating system were evaluated in a multiple testing model to examine static failure, stiffness under static and cyclic loading and cyclic fatigue.Background
Methods
For press-fit cups we observed highly significant (p<
0,01) cancellous BD loss in all sectors (−17% to −53%), cortical BD loss ventral and dorsal to the cup (−12% to −23%) and very limited BD loss cranial (−4% to −13%) to the cup.
No funds were received in support of this study.
The present study was conducted to analyze the specific morphological features of press-fitted quadriceps tendon-patellar bone grafts that determine primary graft stability in ACL-reconstruction. Ten quadriceps tendon-patellar bone grafts were harvested from fresh frozen human cadaveric knees (age 52–82) and fixed to porcine femora in a press-fit technique. Four specimens were prepared for histological analysis of the bone-tendon junction, while a modified technique for tissue-plastination was applied to 6 specimens to investigate the microscopic and microradiographic features of the bone-to-bone interface. Analysis of the bone-tendon junction revealed a serious damage of the fibrocartilage at the attachment zone according to the impaction of the patellar bone plug with implantation. Microradiographs and microscopy of the plastinated specimens showed that there is a trabecular interaction between the bony interfaces of the graft and the femoral tunnel, representing an early osseous integration with local increase of radiopacity. In consequence, both elevated compressive forces as well as increased frictional resistance seem to contribute to the primary stability of press-fit fixated grafts. The stability of quadriceps tendon-patellar bone grafts in press-fit technique to a certain degree depends on bone quality, allowing compressive forces to arise at the bone-to-bone interface. Loss of graft stability, however, is caused by disturbance of the integrity of the bone-tendon junction while impacting the patellar bone plug into the femoral tunnel.
The prosthesis used was a prototyp and had a constrained design with a ball and socket principle.
The purpose of this study was to evaluate the clinical outcome of a hydroxyapatite (HA)-coated tapered stem and to assess bone remodelling of the proximal femur using quantitative computed tomography osteodensitometry. Fifty consecutive hips were managed with total hip replacement using the Cerafit Multicone H-A.C. stem with HA coating and the Cerafit Triradius-M press-fit cup (Ceraver Osteal, Paris, France). The mean follow-up was 3 years (range, 2.9 to 4 years). Current criteria were used for clinical and radiological assessment. Forty-nine hips (98%) were clinically rated good or excellent. The mean preoperative Harris Hip Score was rated 57, and it has improved to 96 at the time of follow-up. The radiographs showed stable fixation by bone ingrowth in all hips. Fifteen patients (15 hips) were eligible for osteodensitometry. The mean decrease of the overall bone density (BD) in the metaphyseal portion of the femur 3 years after insertion of the stem was rated 14.21%, and the mean decrease of the cortical BD was rated 15.52%. The mean decrease of the overall BD in the diaphyseal portion of the femoral component was rated 10.00%, and the mean decrease of cortical BD was rated 7.76%. Little changes were observed underneath the tip of the stem. The clinical and radiological outcomes of the tapered stem with HA coating at a mean follow-up of 3 years compares favourably with other reports. Results of osteodensitometry show less proximal femur BD loss in comparison to similar investigations performed using uncemented stems.
The first Ceramic knee implant in a human patient was used by Dr. G. Langer of the Orthopedic Clinic at the University of Jena, Germany in 1972 [ The wear behavior of the Ceramic components for the knee system were tested in accordance to ISO/WD 14243-3 for 5*106 cycles. Six samples were tested. The lubricant was calf serum diluted with deionized water. All tests have been performed with components made of the novel AMC Ceramic. The wear test performed showed an average gravimetric wear rate below 1 mg/1*106 cycles on each of the six components. A change of geometry was not measurable after 5 million cycles. No significant change of the surface structure was detectable with a conventional surface tracer. SEM and AFM pictures show traces of ultra mild abrasive wear at the surface. The performed investigation on the novel knee concept shows the following potential benefits for a Ceramic knee bearing:
approx. 500 times lower volumetric wear low risk of tribologically induced failure no PE particle induced osteolysis The novel AMC Ceramic offers a solution to minimize the allergic and wear related problems of knee implants. New concepts on the basis of hard on hard combination are to be realized. The use of knee endo-prosthesis with Ceramic on Ceramic combination is an option for îzeroî wear bearings in the knee. These first results motivate to start further R&
D on Ceramic on Ceramic bearings for total knee implants.
The first Ceramic knee implant in a human patient was used by Dr. G. Langer of the Orthopedic Clinic at the University of Jena, Germany in 1972 [ The wear behaviour of the Ceramic components for the knee system were tested in accordance to ISO/WD 14243-3 for 5*106 cycles. Six samples were tested. The lubricant was calf serum diluted with deionized water. All tests have been performed with components made of the novel AMC Ceramic. The wear test performed showed an average gravimetric wear rate below 1 mg/1*106 cycles on each of the six components. A change of geometry was not measurable after 5 million cycles. No significant change of the surface structure was detectable with a conventional surface tracer. SEM and AFM pictures show traces of ultra mild abrasive wear at the surface. The performed investigation on the novel knee concept shows the following potential benefits for a Ceramic knee bearing:
approx. 500 times lower volumetric wear low risk of tribologically induced failure no PE particle induced osteolysis The novel AMC Ceramic offers a solution to minimize the allergic and wear related problems of knee implants. New concepts on the basis of hard on hard combination are to be realized. The use of knee endoprosthesis with Ceramic on Ceramic combination is an option for ”zero” wear bearings in the knee. These first results motivate to start further R&
D on Ceramic on Ceramic bearings for total knee implants.