According to the Canadian Joint Replacement Registry, in 2010–2011 there were 17,303 hip replacements performed in Canada of which 10% were revisions. More than 73% of these revisions were for aseptic loosening, wear, and instability which suggests that hip biomechanics may be anomalous. The hip joint is often described as a ball-and-socket joint, which implies congruent interacting bony joint surfaces and purely rotational relative motion. This study challenges the accepted kinematic description by analysing detailed motion of the hip joint using surgical navigation technology. An in-vitro study was conducted using twelve fresh frozen cadaveric human hemi-pelvises in three soft-tissue states. Three dimensional digital models of each specimen were generated from segmentation of computed tomography images. Local coordinate reference devices, mounted on the proximal femur and anterior-superior iliac spine, were registered and tracked with an active optical localisation system. Positions and orientations were imported to custom virtual surgery software. The study used soft-tissue states as one variable and twelve combinations of flexion/extension, abduction/adduction and internal/external rotation as the other variable. The entire series of motions were repeated for (I) soft tissues intact, (II) capsule intact and (III) completely disarticulated joint. Translation of the femoral head with respect to the acetabular cup at each frame was extracted from the recorded data. An Analysis of Variance (ANOVA) was used to determine whether the means of translations in each dissection states were significantly different. Translatory motion was observed in all specimens. Significant differences were found between magnitudes of translation in distinct soft tissue states (p<0.001). Investigation of sudden changes in translational tracks of each femoral head, plotted as 2-D wave forms, showed that there were no correlations between contact zones and excursions. Interestingly, three specific maneuvers were found to be more likely to cause maximal translations: ankle on knee (where the femur is flexed and externally rotated while being abducted), ankles crossed (where the femur is flexed and externally rotated while being adducted) and the pivot (where the femur is extended and externally rotated while the pelvis is abducted). The highly accurate surgical navigation system detected subtle translatory behaviour in hip motion. The data provided evidence that the femoral head translates with respect to the acetabular cup with or without any contact between the two bones; such impingements were previously thought to be the main reason for femoral excursion. The statistical significance found between translations exhibited at different soft tissue states indirectly supports an aspherical model of the adult hip, with kinematics driven by both soft tissue and the anatomy. This work towards an improved biomechanical model of the hip could help guide both surgical intervention and implant design, leading to improved outcomes for the hundreds of thousands of hip surgeries performed globally each year.
Metal-on-metal hip resurfacing arthroplasty (MoMHRA) has been a popular alternative treatment for young patients with hip osteoarthritis. Despite its advantages over total hip arthroplasty, the use of MoMHRA remains controversial. Achieving the correct positioning of the prosthetic is a concern due to the difficulty and novelty of this procedure. Furthermore, it has been reported that post-operative management using 2D radiographs contains high degrees of variance leading to poor detection of prosthetic malpositioning. In order to compensate for the lack of available technology, current literature has suggested the use of blood metal ion levels as indirect predictors of prosthetic malpositioning due to the abnormal release of metal ions, particularly Chromium and Cobalt, as a result of increase wear and tear. The purpose of this study was to determine whether 2D/3D registration technology can report prosthetic orientation To begin this study, post-operative x-rays (n=72) were used as the two-dimensional media to measure acetabular orientation. Only the acetabular component was examined in this study and acetabular orientation was defined as the function of inclination and version angles. Virtual three-dimensional models of the native, pre-operative pelvises and the acetabular implant were generated and were manually superimposed over the post-operative x-ray images according to anatomical landmarks. A manual 2D/3D registration program was specifically designed for this task. Inclination and version angles of the 2D/3D registered product were measured. Post-operative CT models, which offer the most accurate depiction of the prosthetic
Understanding bone morphology is essential for successful computer assisted orthopaedic surgery, where definition of normal anatomical variations and abnormal morphological patterns can assist in surgical planning and evaluation of outcomes. The proximal femur was the anatomical target of the study described here. Orthopaedic surgeons have studied femoral geometry using 2D and 3D radiographs for precise fit of bone-implant with biological fixation. The use of a Statistical Shape Model (SSM) is a promising venue for understanding bone morphologies and for deriving generic description of normal anatomy. A SSM uses measures of statistics on geometrical descriptions over a population. Current SSM construction methods, based on Principal Component Analysis (PCA), assume that shape morphologies can be modeled by pure point translations. Complicated morphologies, such as the femoral head-neck junction that has non-rigid components, can be poorly explained by PCA. In this work, we showed that PCA was impotent for processing complex deformations of the proximal femur and propose in its place our Principal Tangent Component (PTC) analysis. The new method used the Lie algebra of affine transformation matrices to perform simple computations, in tangent spaces, that corresponded to complex deformations on the data manifold.INTRODUCTION
METHOD
Computer-assisted methods for acetabulum cup navigation have shown to be able to improve the accuracy of the procedure, but are time-consuming and difficult to use. The goal of this project was to develop an easy-to-use navigation technique, requiring minimal equipment for acetabular cup alignment. A preoperative CT scan was obtained, a 3D model of the acetabulum was created, the pelvic plane determined and the cup orientation planned. A registration area, which included the accessible part of the acetabular fossa and the surrounding articular surface, was chosen for the individualised guide. A guidance cylinder, aligned along the planned cup orientation, was attached in the centre of the guide. To transfer the planned alignment information from the registered guide to the impacting of the cup, we developed an intraoperative guidance method based on inertia sensors. The sensors were aligned orthogonal to the central cylinder of the patient-specific guide and the orientation was recorded. At the time of impacting the cup, the sensors were attached to the impactor and the surgeon used the recorded information for the alignment of the impactor.Introduction
Material
Developmental dysplasia of the hip is a condition in which the acetabulum provides insufficient coverage of the femoral head in the hip joint. This configuration gives poor biomechanical load distribution, with increased stress at the superior aspect of the joint surfaces, and can often lead to degenerative arthritis. Morphologically, the poor coverage may be due to an acetabulum that is too shallow or oriented in valgus. The dysplastic deformity can be treated surgically with a group of similar procedures, often labeled periacetabular osteotomies or rotational acetabular osteotomies. Each involves separating the acetabulum from the pelvis and fixating the fragment back to the pelvis in an orientation with increased coverage of the femoral head. This redistributes the biomechanical loads relative to acetabulum. Bone remodeling at the level of trabeculae is an accepted concept under research; however, it is unclear whether the hip undergoes gross morphology changes in response to changes in biomechanical loading. An understanding of the degree to which this remodeling occurs (if at all) may have an impact on surgical planning. In this retrospective study, computed tomography (CT) scans of 13 patients (2 male, 11 female, 40 ± 9 years of age) undergoing unilateral periacetabular osteotomies were examined; scans were taken both pre-operatively and at least a year post-operatively with an in-plane resolution of 0.55 mm and a slice thickness of 1.25 mm. Scans were segmented to produce triangulated meshes for the proximal femurs and the pelvis. These scans were manually processed to isolate the articular portions of the femoral heads and acetabulums, respectively; the fovea, acetabular fossa, any osteophytes and any segmentation artifacts were excluded. Post-operative meshes were registered to their pre-operative counterparts for both the femoral head and the acetabulum, for both the operative and non-operative hips, using the iterative closest point (ICP) algorithm to 20 iterations. To account for differences in defining the edges of the articular surfaces in the manual isolation, metrics were only calculated using points that were within 0.3 mm of a normal from the opposing mesh. With the resulting matched data, nearest neighbour distances were calculated to form the remodeling metrics. Select spurious datapoints were removed manually. For the operative femoral heads, the registered post-operative points were 0.24±0.53 mm outside of the pre-operative points. The maximum deviation was on average 1.94 mm with worst-case of 2.99 mm; the minimum deviation was −0.62 mm with worst-case of −2.06 mm. Positive numbers indicate the post-operative points are ‘outside’ of the pre-operative points – that is, farther from the head centre. The non-operative femoral heads have similar deviation values, 0.21±0.46 mm outside, with maximum and minimum deviation averaging to 1.24 mm and −0.74 mm respectively, with worst cases of 2.99mm and −1.80mm. For the operative acetabulums, the post-operative deviations were −0.08±0.43mm. The maximum and minimum deviations averaged to 0.62mm and −0.82mm, with worst cases of 2.14mm and −1.51mm across the set. Again, the non-operative acetabulums were very similar; post-operative deviations were −0.02±0.43mm, maximum and minimum deviations averaged to 1.24mm and −0.65mm, with worst cases of 1.97mm and −2.00mm. These quantitative measurements were reflected in manual examination of the meshes; generally speaking, there were small deviations with no overarching patterns across the anatomy. All metrics were very similar across the same anatomy (that is, femoral head or acetabulum) regardless of whether the hip operative or non-operative. Femurs tended to ‘grow’ slightly post-operatively, but by less than a half voxel in size. Given that the CT voxels are large compared to the measured deviations, it is possible the results may be sensitive to the manual segmentations used as source data. Manual examination of the deviations indicated a few potential trends. Seven operative and eleven non-operative acetabulums had a small patch of positive deviation (1mm to 1.5mm) in the anterosuperior aspect. This can be seen in the plot as the yellow-red area near the top right of the leftmost rendering. Other high-deviation areas included the superior aspect of the acetabulum (both positive and negative) and the superior aspect of the femoral head (generally positive). The edges of the mesh were often a source of high deviation. This is likely an artifact of over-inclusion the manual isolation of the articular surfaces, as joint surfaces become non-articular as they move away from the joint interface. Overall, the superior and anterosuperior aspects of the acetabulum and the superior aspect of the femoral head showed some indication of systemic changes; further study may clarify whether these data represent consistent anatomical changes. However, as the magnitude of the deviations between pre- and post-operative scans are on or below the order of the CT voxel size, we conclude that (in the absence of other strongly compelling evidence) periacetabular osteotomies for adults should be planned without the expectation of gross remodeling of the articular surfaces.
Femoroacetabular impingement is a condition in which the femoral head/neck region abnormally contacts the acetabulum, limiting the range of motion of the hip and often associated with pain, damage, and loss of function. The pathophysiology of osteoarthritic changes stemming from impingement syndromes has been linked to the shape of the hip; however, little is known about the influence of the soft tissues to this process. In this pilot study, we used computer-assisted navigation technology to track motion on a cadaver that had mild bilateral cam-impingement lesions, and then performed a virtual simulation to locate sites of impingement. We hypothesised that soft tissues contribute to the degree and location of impingement, so we compared impingements across three different dissection states: (i) all soft tissues intact; (ii) post-capsulectomy; with only the labrum and With ethical approval, we used one fresh frozen cadaver pelvis that was sectioned above the fifth lumbar vertebra and at the knee. The femurs and pelvis were implanted with fiducial screws as an accurate means for surface-based image registration. With all soft tissues intact, tissues were imaged using computed tomography with a slice thickness of 0.625 mm. The CT scans were imported into Mimics (v13.0, Materialise, Belgium) and carefully segmented, with particular detail to the articular regions and fiducials, to create 3D digital models of the pelvis and femurs. On each side, optical local coordinate reference (LCR) bodies were attached at the proximal femur and iliac crest to permit spatial tracking with an Optotrak Certus camera (Northern Digital Inc., Waterloo, Canada). The 3D digital models were imported into the VSS navigation system (iGO Technologies, Kingston, Canada) and scrupulously registered to the anatomy using the fiducial screws and a calibrated probe. The pose of the femur and pelvis were recorded throughout a series of twelve movements involving various combinations of flexion-extension, abduction-adduction, internal-external rotation and circumduction, as well as functional movements typical of a clinical hip screening. Soft tissues were selectively removed and the movements were repeated post-capsulectomy and completely disarticulated. The recorded pose data were applied to the 3D digital models to perform a computational simulation of the movements during the trials. The pose data were expressed in coordinates of the anterior pelvic plane to compute angles of motion in the principal directions (flexion, abduction, rotation). The motion data were further filtered so that only comparable ranges of motion were present for data analysis. Algorithms were developed to determine bone-on-bone impingement locations by finding contact points between the models. Impingement locations were plotted on the digital models of the femur and pelvis in order to establish zones of impingement. The surface area of each impingement zone was computed by using a Crust-based algorithm that triangulated impingement points encompassing a region, and then summed the surface area of each triangle to estimate the total impingement surface area. Upon visual inspection, it was immediately apparent that impingements tended to occur in well-defined regions. On the femur, these were found along aspects of the head-neck junction, especially on or near osteophytes. On the pelvis, impingement regions were found along the acetabular rim and extending into the lunate region. With soft tissues intact, both femurs and pelvis had prominent anterior and posterior impingement zones. In contrast, post-capsulectomy impingement zones were predominately confined to the anterior region. It should be noted, however, that the total impingement area decreased post-capsulectomy, representing only about 25% of the total area of impingements when all soft tissues were intact. This was also true in the disarticulated state. Both femurs had mild posterior cam lesions, the right worse than the left. Impingements were seen at these sites with soft tissues intact, but diminished almost entirely post-capsulectomy. The anterior lesions were located With soft tissues intact, impingements tended to occur in external rotation and abduction. With soft tissues removed there was a pronounced shift towards impingements occurring in internal rotation. Impingements were also noted in large flexion angles and large abduction-adduction angles in the absence of soft tissues. Although it is widely accepted that the hip is spherical in shape and has ball-and-socket kinematics, recent work suggests that the osteoarthritic hip is This preliminary study provides a methodology for studying the effects of soft tissue on impingements. We conclude that soft tissues do indeed play an important role in impingement and may even contribute to the development of impingement lesions. Limitations include a small sample size, so further studies are required prior to conclusively establishing impingement patterns in passive kinematics of cadaver hips.
Hip Resurfacing Arthroplasty (HRA) is a surgical technique that has become more popular in recent years for the treatment of hip osteoarthritis in young patients. For these patients, an HRA offers the advantages of preserving the physiologic anatomy of a patient's femoral head size and neck offset, which has been theoretically suggested to improve range of motion and muscle function, as well as preserving bone stock for future revision surgeries. Although the improvements in quality of life outcomes in patients undergoing total hip arthroplasty (THA) are well-documented, there is a lack of literature documenting the improvements in quality of life in patients undergoing HRA. One hundred and four consecutive patients presenting for elective HRA at our institution were recruited between 2004 and 2008 for participation in this study, which was approved by the Ethics Review Board at our institution. The mean age was 51±6y, male:female ratio 79:24 and mean BMI of 29.7±4.4 Preoperative computed tomography (CT) scans were used to preoperatively plan each procedure, and intraoperative procedures were performed using individualized templates [Kunz M, Rudan JF, Xenoyannis GL, Ellis RE. Computer assisted hip resurfacing using individualized drill templates. J Arthroplasty 2010;25(4):600–6]. Surgery time was 90±28 min including time for intraoperative verification of templating accuracy. Mobilization with physiotherapy began within 24 hrs of surgery and continued until the patient was discharged, usually within 2–3 days of surgery. Each patient completed the modified Harris Hip Score (HHS), the UCLA activity rating, the SF-36 mental and physical health score and the Western Ontario and McMaster University Osteoarthritis Index (WOMAC) questionnaires at their preoperative appointment, then at 6 months, 1 year and 2 years postoperative. In addition, radiographs were taken at these appointments to confirm component position, and to check for signs of loosening or heterotopic ossification. Chi-square and t-tests were used for within and between group comparisons on selected variables and across times. Only four patients required revision to THA, with one case of avascular necrosis of the femoral head, one femoral neck fracture and two infections. The mean of the preoperative modified Harris Hip Scores was 51±19.7 with a significant improvement in the mean score at 6 months, 1 and 2 years postoperative (p<0.01). The preoperative UCLA activity index averaged 4 (range 2–9), improving to a mean of 6 at 6 months (p<0.001) then at 1 to 2 years to 7 (p<0.001). Mental state and further assessment of physical function were performed using the SF-36 scores, with the physical score initially 27.5 and improving to 45.2 after 2 years (p<0.01). The mental component score (MCS) means were almost unchanged, from 50.3 preoperatively to 51.5 after 2 years (p<0.21). Further data processing showed that patients who began with a below-average mental score also had significantly worse WOMAC scores for pain, stiffness and function; these patient showed a significantly higher MCS at 2 years (p<0.05). Those whose MCS were above average preoperatively showed little difference after 2 years.MATERIALS AND METHODS
RESULTS
The purpose of this study was to compare the accuracy and precision of acetabular component placement in cadavers using conventional techniques and CT-based individualised guides by both orthopaedic trainees and surgeons. Seven cadaveric pelvises underwent a computerised tomography (CT) scan and a three-dimensional virtual model was created. Based on this model, cup orientation was planned for 40 degrees of inclination and 20 degrees of anteversion and an individualised guide was designed. A physical model of the individualised guide was created using a Rapid Prototyping machine (dimension SST, Stratasys, Inc., USA). The pelvises were mounted in the lateral position and covered with a soft tissue envelope exposing only the acetabulum as would be visualised during a lateral approach to the hip. A total of 26 participants (16 orthopaedic surgery residents, 10 orthopaedic surgeons) were asked to use an acetabular cup impactor to place the cup in 40 degrees of inclination and 20 degrees of anteversion. This was first completed for all seven pelvises using conventional placement. Each participant was then instructed on how to use the individualised guide. They were provided with the guide and an individualised acetabular model to practice placement. Once they were comfortable with the system they were then asked to use the individualised guides in each of the seven pelvises. An optoelectronic navigation system was used to evaluate the accuracy of the placement of the acetabular cup. An Optotrak Certus Motion Tracking System (Northern Digital Inc., Waterloo, Canada) was used. An optoelectronic marker was attached to the acetabulum and a combined pair-point and surface matching was performed. After the guide was placed in the acetabulum, a tracked axial pointing device was aligned inside the guidance cylinder and its three-dimensional orientation stored. The angle deviation between the achieved position and the planned cup orientation was calculated. There were no statistically significant differences between trainees and surgeons in either conventional placement or use of the individualised guides. There were no statistically significant differences in anteversion between the groups. The individualised guide showed statistical improvement in the absolute deviation from planned inclination compared to conventional placement (4.2° vs. 9.1°, p< 0.001) as well as a reduction in standard deviation (3.3 vs. 5.9, p< 0.001). The use of individualised guides can improve the accuracy and precision in the placement of acetabular component positioning. The current guide design controls well for inclination, which is a key factor in the function of a total hip arthroplasty. Based on this data, we will implement design changes to better address version of the component. Future work will likely include comparison to computer-assisted cup placement as well.