The potential of cells derived from human umbilical cord(UC) for orthopaedic cell engineering is evaluated by dissecting the UC into four distinct anatomical structures – cord lining (CL), Wharton's Jelly (WJ), umbilical cord artery (UCA) and umbilical cord vein (UCV). Cells from individual anatomical layers were grown by explant culture technique for 21 days. Tri-lineage differentiation and growth kinetics of cells from each layer were compared. Flowcytometry was done according to ISCT criteria to ascertain their surface antigen expressions. Cells from all four layers differentiated into bone, cartilage and fat. Osteogenic and chondrogenic differentiation was variable for each type of cells. All cells expressed surface antigens characteristic of mesenchymal stem cells (MSC). These cells can form a potential cell source in cell engineering to produce bone and cartilage although individual cell type needs to be characterised from each anatomical layer of UC and identify the best cell type for cell engineering.
Stem cells are a key component of regenerative medicine strategies. Particular areas of musculoskeletal application include cartilage and bone regeneration in arthritis and trauma. There are several types of stem cell and this article will focus on the adult derived cells. The review includes current issues and future developments.
Despite the increasing interest and subsequent published literature on hip resurfacing arthroplasty, little is known about the prevalence of its complications and in particular the less common modes of failure. The aim of this study was to identify the prevalence of failure of hip resurfacing arthroplasty and to analyse the reasons for it. From a multi-surgeon series (141 surgeons) of 5000 Bimingham hip resurfacings we have analysed the modes, prevalence, gender differences and times to failure of any hip requiring revision surgery.Purpose
Method
Despite the increasing interest and subsequent published literature on hip resurfacing arthroplasty, little is known about the prevalence of its complications and in particular the less common modes of failure. The aim of this study was to identify the prevalence of failure of hip resurfacing arthroplasty and to analyse the reasons for it. From a multi-surgeon series (141 surgeons) of 5000 Birmingham hip resurfacings we have analysed the modes, prevalence, gender differences and times to failure of any hip requiring revision. To date 182 hips have been revised (3.6%). The most common cause for revision was a fracture of the neck of the femur (54 hips, prevalence 1.1%), followed by loosening of the acetabular component (32 hips, 0.6%), collapse of the femoral head/avascular necrosis (30 hips, 0.6%), loosening of the femoral component (19 hips, 0.4%), infection (17 hips, 0.3%), pain with aseptic lymphocytic vascular and associated lesions (ALVAL)/metallosis (15 hips, 0.3%), loosening of both components (five hips, 0.1%), dislocation (five hips, 0.1%) and malposition of the acetabular component (three hips, 0.1%). In two cases the cause of failure was unknown. Comparing men with women, we found the prevalence of revision to be significantly higher in women (women = 5.7%; men = 2.6%, p <
0.001). When analysing the individual modes of failure women had significantly more revisions for loosening of the acetabular component, dislocation, infection and pain/ALVAL/metallosis (p <
0.001, p = 0.004, p = 0.008, p = 0.01 respectively). The mean time to failure was 2.9 years (0.003 to 11.0) for all causes, with revision for fracture of the neck of the femur occurring earlier than other causes (mean 1.5 years, 0.02 to 11.0). There was a significantly shorter time to failure in men (mean 2.1 years, 0.4 to 8.7) compared with women (mean 3.6 years, 0.003 to 11.0) (p <
0.001).
Between November 1994 and June 1999, 35 patients referred to our Problem Fracture Service with chronic diaphyseal osteomyelitis were treated using a closed double-lumen suction irrigation system after reaming and arthroscopic debridement of the intramedullary canal. This is a modified system based on that of Lautenbach. Between June and July 2007 the patients were reviewed by postal questionnaire and telephone and from the case notes. At a mean follow-up of 101 months (2 to 150), 26 had no evidence of recurrence and four had died from unrelated causes with no evidence of recurrent infection. One had been lost to follow-up at two months and was therefore excluded. Four had persisting problems with sinus discharge and one had his limb amputated for recurrent metaplastic change. Our results represent a clearance of infection of 85.3% (29 of 34), with recurrence in 11.8% (4 of 34). They are comparable to the results of the Papineau and Belfast techniques, but with considerably less surgical insult to the patient.
Wear of metal-on-metal bearings causes elevated levels of cobalt and chromium in blood and body fluids. Metal-on-metal bearings have two distinct wear phases. In the early phase, the wear rate is high. Later, it decreases and the bearing enters a steady-state phase. It is expected that as the wear rates decline, the level of cobalt detected in plasma will also decrease. We studied the baseline and exercise-related cobalt rise in 21 patients (13 men and eight women) with a mean age of 54 years (38 to 80) who had undergone successful hip resurfacing at a mean of 44 months (10 to 96) earlier. Our results showed that circulating baseline cobalt levels were not significantly correlated with the time since implantation (r = 0.08, p = 0.650). By contrast, the exercise-related cobalt rise was directly correlated with the inclination angle of the acetabular component (r = 0.47, p = 0.032) and inversely correlated with the time since implantation (r = −0.5, p = 0.020). Inclination of the acetabular component should be kept less than 40° to decrease the production of wear debris.
The patients were admitted for harvesting of stromal stem cells by bone marrow aspiration from the iliac bone. BMSSC were expanded in tissue cultures for three weeks to an average of 5 x 106 cells. After successful culture the non-union site underwent decortication and BMSSC added to synthetic bone substitute (different types) on one side of the fracture (medial or lateral) according to randomisation. The side of treatment was blinded to patient, surgeons and radiologist. Standard radiographs were taken and evaluated independently by three experienced musculoskeletal radiologists. The extent of callus formation on each side was recorded. In equivocal cases computerized tomography (CT) was also obtained.
Successful healing of a nine-year tibial nonunion resistant to six previous surgical procedures was achieved by tissue engineering. We used autologous bone marrow stromal cells (BMSCs) expanded to 5 × 106 cells after three weeks’ tissue culture. Calcium sulphate (CaSO4) in pellet form was combined with these cells at operation. The nonunion was clinically and radiologically healed two months after implantation. This is the description of on healing of a long-standing tibial nonunion by tissue engineering. The successful combination of BMSCs and CaSO4 has not to our knowledge been reported in a clinical setting.
Autologous chondrocyte implantation (ACI) has been used most commonly as a treatment for cartilage defects in the knee and there are few studies of its use in other joints. We describe ten patients with an osteochondral lesion of the talus who underwent ACI using cartilage taken from the knee and were prospectively reviewed with a mean follow-up of 23 months. In nine patients the satisfaction score was ‘pleased’ or ‘extremely pleased’, which was sustained at four years. The mean Mazur ankle score increased by 23 points at a mean follow-up of 23 months. The Lysholm knee score returned to the pre-operative level at one year in three patients, with the remaining seven showing a reduction of 15% at 12 months, suggesting donor-site morbidity. Nine patients underwent arthroscopic examination at one year and all were shown to have filled defects and stable cartilage. Biopsies taken from graft sites showed mostly fibrocartilage with some hyaline cartilage. The short-term results of ACI for osteochondral lesions of the talus are good despite some morbidity at the donor site.
Proximal femoral fractures have always been in the centre of attention in terms of their demand on the manpower and resources of the NHS. With an ageing population, the number of these fractures will continue to be a big part of the workload of all the Orthopaedic and rehabilitation units. Hence it is important to be aware of any definite variation in the incidence of proximal femoral fractures for appropriate planning of the available resources. We carried out a study to find out whether there is a definite variation in the incidence of these fractures. The number of operated proximal femoral fractures across 31 hospitals of North-west England and Scotland were collected on a monthly basis from 1994 to 1999. This database of 27, 000 operated proximal femoral fractures was assessed statistically. Our analysis reveals that the incidence of these fractures during December is about 17% higher than the rest of the annual mean with a 2% standard error of the mean (SEM) and in January this increase is about 22% with an SEM of 1%. These trend and pattern were observed for both intra and extra capsular fractures of neck of femur and was consistent over the five years. There was no other significant change in the incidence pattern during other months of the year. This study, one of the largest of its kind ever carried out in Britain, proves that there is an increase in the incidence of hip fractures in the months of December and January. There should be appropriate allocation of manpower and rehabilitation facilities along with a matching reduction in the elective Orthopaedic admissions during the months of December and January to tackle this seasonal variation.
We fatigue-tested a new resorbable composite screw (PLLA/tri-calcium phosphate) and a metal interference screw. We present average data and tolerance limits.
Means and standard deviations of pullout strength were compared. Log-log curves were fitted between force level and cycles to failure. LTLs were calculated.
Tissue engineering is an increasingly popular method of addressing pathological disorders of cartilage. Recent studies have demonstrated its clinical efficacy, but there is little information on the structural organisation and biochemical composition of the repair tissue and its relation to the adjacent normal tissue. We therefore analysed by polarised light microscopy and immunohistochemistry biopsies of repair tissue which had been taken 12 months after implantation of autologous chondrocytes in two patients with defects of articular cartilage. Our findings showed zonal heterogeneity throughout the repair tissue. The deeper zone resembled hyaline-like articular cartilage whereas the upper zone was more fibrocartilaginous. The results indicate that within 12 months autologous chondrocyte implantation successfully produces replacement cartilage tissue, a major part of which resembles normal hyaline cartilage.
Nomograms derived from mathematical analysis indicate that the level of malunion is the most important determinant of changes in the moment arm of the knee, the plane of the ankle and alterations in limb length. Testing in five patients undergoing reconstruction showed a mean error of postoperative limb length of 2.2 mm (
We describe a technique for measuring the Stiffness of regenerate bone after leg lengthening. This allows early identification of slow healing by reference to normal patterns. We determined the time of removal of the fixator from clinical and radiological information independent of the stiffness result. In a series of 30 leg lengthenings there were no refractures when the tibial stiffness had reached 15 Nm/° or the femoral stiffness 20 Nm/°. Three refractures occurred at lower stiffness values. The technique is simple to perform, will allow a reduction in plain radiography and is recommended for routine postoperative management.