Statins, inhibitors of 3-hydroxy-3 methylglutaryl coenzyme A (HMG-Co-A) reductase, have revolutionised the treatment of hypercholesterolaemia. More recently statins have been shown to have potent anti inflammatory effects. We investigated the effects of cerivastatin in attenuating the activation of human macrophages by polymethylmethacrylate (PMMA) particles.
PMMA activation was attenuated by the ERK1/2 inhibitor, UO126. Western blotting confirmed ERK downregulation by cerivastatin, establishing a mechanism for its anti-inflammatory effects.
The mechanism by which cells die is important in an immune response and its resolution. The role of apoptosis in sepsis and trauma, and its regulation by cytokines is unclear. During the systemic inflammatory response, rates of human neutrophil apoptosis are decreased. Peritoneal macrophage apoptosis has been induced by nitric oxide and Lipopolysaccharide (LPS) We examined the induction and effects of macrophage apoptosis in a model of trauma and sepsis. One hundred female CD-I mice were randomised into four groups: Control, Septic model, challenged with intraperitoneal LPS (1.Img/200ul/mouse), Traumatic model, received hind limb amputation (HLA) and a Combined trauma/septic model. After 24 hrs mice were sacrificed and peritoneal macrophages were assessed for apoptosis by morphology and DNA fragmentation by flow cytometry and DNA gel electrophoresis Peritoneal lavage from septic models had a decreased percentage of macrophages in comparison to control and trauma groups. The septic model also had a significantly increased incidence of apoptosis in comparison to control and trauma levels. There was no significant difference between control and traumatic groups. These findings demonstrate that in a murine model of sepsis, lipopolysaccharide induces macrophages apoptosis. Modulation of this immune response may have important roles in the management of trauma patients.
Its pathogenesis is based upon the generation of wear debris particles which trigger synovial macrophage activation. Statins, inhibitors of 3-hydroxy-3 methylglutaryl coenzyme A (HMG-Co-A) reductase, have revolutionised the treatment of hypercholesterolaemia and cardiovascular disease. The antiinflammatory properties of HMG-CoA reductase inhihitors or the statin family are well recognised. We investigated the effects of ceriv-astatin in attenuating the activation of human macrophages by polymethylmethacrylate (PMMA) particles.
Western blotting confirmed Raf/MEK/ERK down-regulation by cerivastatin, establishing a mechanism for its anti-inflammatory effects.
To determine whether systemic nitric oxide production in tourniquet-induced skeletal muscle ischaemia-reper-fusion injury (SMRI) is dependent on release of vascular endothelial growth factor (VEGF), a modulator of nitric oxide cytoprotection in myocardial ischaemia-reperfusion injury. Mice were randomised (n=10 per group) into: time controls (no tourniquet) and test animals (bilateral hindlimb tourniquet ischaemia). Blood samples were collected in test animals prior to ischaemia and after reper-fusion. In controls, blood samples were collected at the same corresponding time points. Serum VEGF, nitric oxide metabolites (nitrite and nitrate) and the proinflammatory cytokine tumour necrosis factor (TNF)-α (an indicator of systemic inflammation) were determined. At the end of reperfusion, the lungs and muscle (right gastrocnemius) were harvested and tissue injury determined by measuring myeloperoxidase (MPO) activity, a marker of neutrophil infiltration. Data are presented as mean ± SEM and statistical comparison was performed using one-way analysis of variance (ANOVA) with significance attributed to P <
0.05. In comparison to control animals, muscle (4.9±0.3 versus 4±0.03 units/g of wet tissue; P=0.02) and lung (16.7±1.9 versus 10.4±0.5; P=0.005) MPO activity at the end of repercussion was significantly greater in test animals. The table shows the results with respect to serum cytokine levels and nitricxide metabolites. These data demonstrate that SMRI results in local and systemic proinflammatory responses. In contrast to myocardial ischaemia-reperfusion injury, nitric oxide production in tourniquet-induced SMRI is VEGF-independent. Alternative mechanisms for nitric oxide production in tourniquet-controlled extremity surgery requires further evaluation.