Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_8 | Pages 15 - 15
1 Feb 2013
Ramasamy A Masouros S Newell N Bonner T West A Hill A Clasper J Bull A
Full Access

Current military conflicts are characterised by the use of the Improvised Explosive Device (IED). Improvements in personal protection, medical care and evacuation logistics have resulted in increasing numbers of casualties surviving with complex musculoskeletal injuries, often leading to life-long disability. Thus, there exists an urgent requirement to investigate the mechanism of extremity injury caused by these devices in order to develop mitigation strategies. In addition, the wounds of war are no longer restricted to the battlefield; similar injuries can be witnessed in civilian centres following a terrorist attack.

Key to mitigating such injuries is the ability to deconstruct the complexities of an explosive event into a controlled, laboratory-based environment. In this study, an anti-vehicle underbelly injury simulator, capable of recreating in the laboratory the impulse from an anti-vehicle (AV) explosion, is presented and characterised. Tests were then conducted to assess the simulator's ability to interact with human cadaveric legs. Two mounting conditions were assessed, simulating a typical seated and standing vehicle passenger using instrumented cadaveric lower limbs.

This experimental device, will now allow us (a) to gain comprehensive understanding of the load-transfer mechanisms through the lower limb, (b) to characterise the dissipating capacity of mitigation technologies, and (c) to assess the biofidelity of surrogates.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_8 | Pages 16 - 16
1 Feb 2013
Ramasamy A Hill A Phillip R Gibb I Bull A Clasper J
Full Access

The defining weapon of the conflicts in Iraq and Afghanistan has been the Improvised Explosive Device (IEDs). When detonated under a vehicle, they result in significant axial loading to the lower limbs, resulting in devastating injuries. Due to the absence of clinical blast data, automotive injury data using the Abbreviated Injury Score (AIS) has been extrapolated to define current NATO injury thresholds for Anti-vehicle (AV) mine tests. We hypothesized that AIS, being a marker of fatality rather than disability would be a worse predictor of poor clinical outcome compared to the lower limb specific Foot and Ankle Severity Score (FASS).

Using a prospectively collected trauma database, we identified UK Service Personnel sustaining lower leg injuries from under-vehicle explosions from Jan 2006–Dec 2008. A full review of all medical documentation was performed to determine patient demographics and the severity of lower leg injury, as assessed by AIS and FASS. Clinical endpoints were defined as (i) need for amputation or (ii) poor clinical outcome. Statistical models were developed in order to explore the relationship between the scoring systems and clinical endpoints.

63 UK casualties (89 limbs) were identified with a lower limb injury following under-vehicle explosion. The mean age of the casualty was 26.0 yrs. At 33.6 months follow-up, 29.1% (26/89) required an amputation and a further 74.6% (41/89) having a poor clinical outcome (amputation or ongoing clinical problems). Only 9(14%) casualties were deemed medically fit to return to full military duty. ROC analysis revealed that both AIS=2 and FASS=4 could predict the risk of amputation, with FASS = 4 demonstrating greater specificity (43% vs 20%) and greater positive predictive value (72% vs 32%). In predicting poor clinical outcome, FASS was significantly superior to AIS (p<0.01). Probit analysis revealed that a relationship could not be developed between AIS and the probability of a poor clinical outcome (p=0.25).

Foot and ankle injuries following AV mine blast are associated with significant morbidity. Our study clearly demonstrates that AIS is not a predictor of long-term clinical outcome and that FASS would be a better quantitative measure of lower limb injury severity. There is a requirement to reassess the current injury criteria used to evaluate the potential of mitigation technologies to help reduce long-term disability in military personnel. Our study highlights the critical importance of utilising contemporary battlefield injury data in order to ensure that the evaluation of mitigation measures is appropriate to the injury profile and their long-term effects.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 6 | Pages 829 - 835
1 Jun 2012
Ramasamy A Evans S Kendrew JM Cooper J

The open blast fracture of the pelvis is considered to be the most severe injury within the spectrum of battlefield trauma. We report our experience of 29 consecutive patients who had sustained this injury in Afghanistan between 2008 and 2010. Their median new injury severity score (NISS) was 41 (8 to 75), and mean blood requirement in the first 24 hours was 60.3 units (0 to 224). In addition to their orthopaedic injury, six had an associated vascular injury, seven had a bowel injury, 11 had a genital injury and seven had a bladder injury. In all, eight fractures were managed definitively with external fixation and seven required internal fixation. Of those patients who underwent internal fixation, four required removal of metalwork for infection. Faecal diversion was performed in nine cases. The median length of hospital stay following emergency repatriation to the United Kingdom was 70.5 days (5 to 357) and the mean total operating time was 29.6 hours (5 to 187). At a mean follow-up of 20.3 months (13.2 to 29.9), 24 patients (82.8%) were able to walk and 26 (89.7%) had clinical and radiological evidence of stability of the pelvic ring.

As a result of the increase in terrorism, injuries that were previously confined exclusively to warfare can now occur anywhere, with civilian surgeons who are involved in trauma care potentially required to manage similar injuries. Our study demonstrates that the management of this injury pattern demands huge resources and significant multidisciplinary input. Given the nature of the soft-tissue injury, we would advocate external fixation as the preferred management of these fractures. With the advent of emerging wound and faecal management techniques, we do not believe that faecal diversion is necessary in all cases.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 4 | Pages 529 - 535
1 Apr 2012
Birch R Misra P Stewart MPM Eardley WGP Ramasamy A Brown K Shenoy R Anand P Clasper J Dunn R Etherington J

The outcomes of 261 nerve injuries in 100 patients were graded good in 173 cases (66%), fair in 70 (26.8%) and poor in 18 (6.9%) at the final review (median 28.4 months (1.3 to 64.2)). The initial grades for the 42 sutures and graft were 11 good, 14 fair and 17 poor. After subsequent revision repairs in seven, neurolyses in 11 and free vascularised fasciocutaneous flaps in 11, the final grades were 15 good, 18 fair and nine poor. Pain was relieved in 30 of 36 patients by nerve repair, revision of repair or neurolysis, and flaps when indicated. The difference in outcome between penetrating missile wounds and those caused by explosions was not statistically significant; in the latter group the onset of recovery from focal conduction block was delayed (mean 4.7 months (2.5 to 10.2) vs 3.8 months (0.6 to 6); p = 0.0001). A total of 42 patients (47 lower limbs) presented with an insensate foot. By final review (mean 27.4 months (20 to 36)) plantar sensation was good in 26 limbs (55%), fair in 16 (34%) and poor in five (11%). Nine patients returned to full military duties, 18 to restricted duties, 30 to sedentary work, and 43 were discharged from military service. Effective rehabilitation must be early, integrated and vigorous. The responsible surgeons must be firmly embedded in the process, at times exerting leadership.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 4 | Pages 536 - 543
1 Apr 2012
Brown KV Guthrie HC Ramasamy A Kendrew JM Clasper J

The types of explosive devices used in warfare and the pattern of war wounds have changed in recent years. There has, for instance, been a considerable increase in high amputation of the lower limb and unsalvageable leg injuries combined with pelvic trauma.

The conflicts in Iraq and Afghanistan prompted the Department of Military Surgery and Trauma in the United Kingdom to establish working groups to promote the development of best practice and act as a focus for research.

In this review, we present lessons learnt in the initial care of military personnel sustaining major orthopaedic trauma in the Middle East.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 4 | Pages 523 - 528
1 Apr 2012
Birch R Misra P Stewart MPM Eardley WGP Ramasamy A Brown K Shenoy R Anand P Clasper J Dunn R Etherington J

We describe 261 peripheral nerve injuries sustained in war by 100 consecutive service men and women injured in Iraq and Afghanistan. Their mean age was 26.5 years (18.1 to 42.6), the median interval between injury and first review was 4.2 months (mean 8.4 months (0.36 to 48.49)) and median follow-up was 28.4 months (mean 20.5 months (1.3 to 64.2)). The nerve lesions were predominantly focal prolonged conduction block/neurapraxia in 116 (45%), axonotmesis in 92 (35%) and neurotmesis in 53 (20%) and were evenly distributed between the upper and the lower limbs. Explosions accounted for 164 (63%): 213 (82%) nerve injuries were associated with open wounds. Two or more main nerves were injured in 70 patients. The ulnar, common peroneal and tibial nerves were most commonly injured. In 69 patients there was a vascular injury, fracture, or both at the level of the nerve lesion. Major tissue loss was present in 50 patients: amputation of at least one limb was needed in 18. A total of 36 patients continued in severe neuropathic pain.

This paper outlines the methods used in the assessment of these injuries and provides information about the depth and distribution of the nerve lesions, their associated injuries and neuropathic pain syndromes.