UKA is functionally superior to TKA, with kinematics similar to native knees, nevertheless, UKA implants are used in less than 10% of cases. While advantages of UKA are recognized, ACL-deficiency is generally considered a contraindication. The hypothesis of this study was that fix bearing UKA in ACL-deficient knees, with appropriate adaptation of implant placement, would result in similar kinematic trends to conventional UKA with an intact ACL. Ten conventional UKA patients were compared to eight patients with the same implant but a deficient ACL. A 50% tibial slope reduction was applied to compensate for instability resulting from the deficient ACL. Knee kinematics were evaluated using a moving fluoroscope allowing to track the knee joint during deep knee bend, level walking, ramp descent and stair descent. The results were further compared to six TKA patients.BACKGROUND
METHODS
Patellofemoral complications remain a very common post-operative problem in association with total knee arthoplasty (TKA). As malrotation of the femoral component is often considered crucial for the outcome, we analyzed absolute rotational femoral alignment in relation to patellar tracking pre- and postoperatively and matched the results with the two year functional outcome. Femoral rotation and component rotation was assessed by axial radiography using condylar twist angle (CTA). The lateral patellar displacement, patellar tilt and Insall-Salvati index were measured on conventional radiographs. All assessments were done pre-operatively and at 2-year follow up. The series included 48 consecutive TKA (21 men, 27 women) performed at a single high-volume joint-replacement-center in 2008. All operations were performed using a tibia first-ligament balancing technique without patella resurfacing. The implant used was a condylar unconstrained ultracongruent rotating platform design. Outcome was assessed using the international knee society score (KSS) and the Kujala Score for anterior knee pain.Introduction
Methods
Patellar tracking in total knee replacements has been extensively studied, but little is known about patellar tracking in isolated patellofemoral replacements. We compared patellar tracking and the position of the patellar groove in the natural knee, followed by implantation of the femoral component of a PFR (patella unresurfaced) and after implantation of the femoral & patellar component of the PFR. Computer navigation was used to track the patella in eight whole lower extremities of four cadavers in the natural knee, in the same knee with the femoral component of the PFR (PFR-P) and with the femoral and patellar component of the PFR (PFR+P, patella resurfaced) (Depuy Sigma PFR). The form and position of the trochlea in the natural knee and the patellar groove of the femoral component was also analysed. Values are means+/−SD, two tailed Student's t-test for paired samples.Introduction
Methods
Mobile-bearing TKRs allow some axial rotation and may provide a more natural patellar movement. The aim was to compare patellar kinematics among the normal knee, fixed-bearing and mobile-bearing TKR. Optical computer navigation (Brainlab) was used to track the position of the femur, tibia and patella in 9 whole lower extremities (5 fresh cadavers) in the natural knee, in the same knee with the trial components of a posterior stabilised fixed-bearing TKR (FB) (Sigma PFC, Depuy) and a posterior stabilised mobile-bearing TKR (MB) (Sigma RP Stabilised). The patellae were not resurfaced. Values: mean+/−one standard deviation. Statistical analysis: two tailed paired Student's T-test.Introduction
Methods
Knee Society objective and functional score of 190 or above full knee extension and a maximum flexion of 125° or above excellent subjective patient rating. Thirty TKA of 29 patients (9 male, 20 female) with a median age of 70 years (range, 31–87) at time of surgery fulfilled the study criteria. All TKA were implanted at a single high-volume joint replacement center in 2002. In all cases both the condylar twist angle (CTA) using the clinical epicondylar axis (CEA) and the posterior condylar angle (PCA) using the surgical epicondylar axis (SEA) were used to assess rotational alignment of the femoral component.