header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

PATELLAR TRACKING IN MOBILE BEARING AND FIXED BEARING TOTAL KNEE REPLACEMENTS, A CADAVERIC STUDY



Abstract

Introduction: Mobile bearing TKRs may allow some axial rotation and also compensate for a slight tibiofemoral rotational mismatch. This is thought to provide better kinematics and a more natural patellar movement. This theoretical advantage has not been verified in clinical studies for the tibiofemoral kinematics. However, little is known about the patellofemoral kinematics of mobile bearing TKRs. The aim was to compare patellar kinematics among the anatomic knee, fixed bearing TKR and mobile bearing TKR.

Methods: Optical computer navigation marker arrays (Brainlab) were attached to the femur, tibia and patella of 9 whole lower extremities (5 fresh cadavers). The trial components of a fixed bearing posterior stabilised TKR (FB) (Sigma PFC, Depuy) were implanted using a tibia first technique. Then the tibia component was changed to a posterior stabilised mobile bearing tibia component (MB) (Sigma RP Stabilised). The patellae were not resurfaced. The knees were moved through a cycle of flexion and extension on a CPM machine. Medial/lateral shift and tilt was measured relative to the patella position in the natural knee at full extension always with soft tissue closure. The path of the trochlea and patellar groove of the femoral component was registered. Values are expressed as mean+/−one standard deviation. Statistical analysis: two tailed paired Student’s T-test.

Results: M/L shift: There was a tendency for the patella to track 2mm more laterally throughout the flexion range with a FB or MB TKR compared to the natural knee, but this did not reach significance.

Tilt: The patella in the natural knee tilted progressively laterally from extension to flexion, plateauing at 50° of flexion (20°: 1.9+/−2.7°, 40°: 5.6+/−5.4°, 60°: 6.2+/−6.4°, 80°:6.5+/−7.3°, 90°: 6.4+/−7.7°). With a FB or MB TKR the patellae also tilted laterally up to 50 degree of flexion, but then started to tilt back medially, reaching the neutral position again at 90°. The patellae of the FB and MB TKRs were significantly more medially tilted at 50° to 90° of flexion compared to the natural knee. But there was no difference between the FB and MB TKRs. (Fixed bearing: 20°: 2.5+/−7.2° p=0.30, 40°: 3.7°+/−6.5° p=0.15, 60°: 3.1+/−5.8° p=0.02, 80°:1.2+/−6.5° p=0.001, 90°: 0.3+/−7.2° p=0.001, Mobile bearing: 20°: 0.3+/−5.5° p=0.27, 40°: 3.6+/−5.2° p=0.08, 60°: 2.1°+/−5.8 p=0.01, 80°: 0.2+/−6.8 p=0.003, 90°: −0.6+/−7.3 p=0.002; vs. natural)

Trochlea position: The centre of the patellar groove of the femur component was more lateral than the trochlea by 2–5mm, it also extended 10mm further proximally.

Conclusion: There are kinematic differences in patellar tracking between the natural and a FB/MB TKR. This may be due to a slightly different position of the patellar groove. The patellar kinematics of the MB TKR is not more natural compared to the FB TKR.

Correspondence should be addressed to: EFORT Central Office, Technoparkstrasse 1, CH – 8005 Zürich, Switzerland. Tel: +41 44 448 44 00; Email: office@efort.org

Author: Gideon Heinert, Switzerland

E-mail: gideon.heinert@doctors.org.uk