header advert
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 32 - 32
23 Jun 2023
Jacobs JJ Agarwal P Leurgans SE Agrawal S Ayton S Bush AI Hall DJ Schneider J Pourzal R
Full Access

Both total joint arthroplasty (TJA) and Alzheimer's Disease (AD) are prevalent in elderly populations. It is the goal of this study to determine if the presence of implant metals originating from TJA correlates with the onset with higher implant metal content in the brain and AD pathology.

Tissue samples from four brain regions of 701 (229 with TJA) participants from an ongoing longitudinal cohort study (Rush Memory and Aging Project) was analyzed including the inferior-temporal-cortex (ITC), which is associated with early onset of AD. Implant metal (Co, Cr, Mo, Ti, Al) content was determined by ICP-MS. Comparisons were conducted between the no-TJA-group and a TJA group. Due to the higher likelihood of Co release the TJA group was further differentiated in a THA (N=146) and a TKA/TSA (N=83) group. Diffuse and neuritic amyloid plaques and phosphorylated tau were assessed and summarized as standard measures of AD pathology. We used separate linear regression models adjusted for age, sex, education, and APOɛ4-status for the associations of all metals (log-transformed) with global AD pathology, amyloid plaques, and phosphorylated tau.

The THA group had higher cobalt content across all brain regions (p=0.003) and within the ITC (p=0.051) compared to the no-TJA group, whereas the TKA/TSA group did not. Across all tissue samples, Co was associated with higher amyloid load (β=0.35, p=0.027), phosphorylated tau (β=0.47, p=0.011), and global AD pathology (β=0.19, 0.0004) in the ITC. The presence of TJA itself was not associated with AD pathology.

We showed that only Co content was higher within the ITC in persons with THA. We found among all tested metals that Co was consistently associated with AD pathology. Although we found an association of cobalt with AD pathology, the cross-sectional nature of this study does not allow the determination of cause and effect.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_10 | Pages 45 - 45
1 Oct 2020
Jacobs JJ McCarthy SM Hall DJ Levine BR Lundberg HJ Pourzal R
Full Access

Introduction

Total hip replacement failure due to fretting-corrosion remains a clinical concern. We recently described that damage within CoCrMo femoral heads can occur either by mechanically-dominated fretting processes leading to imprinting (via rough trunnions) and surface fretting (via smooth trunnions), or by a chemically-dominated etching process along preferential corrosion sites, termed “column damage”. These corrosion sites occur due to banding of the alloy microstructure. Banding is likely caused during thermo-mechanical processing of the alloy and is characterized by local molybdenum depletion. It was the objective of this study to quantify material loss from femoral heads with severe corrosion, identify the underlying damage modes, and to correlate the damage to the alloy's microstructure.

Methods

105 femoral heads with a Goldberg score 4 were evaluated. Coordinate measuring machine data was used to compute material loss and visualize damage features. Time in situ and stem alloy were identified. Metallographic samples were produced for each case. Grain size and banding were identified using light-microscopy. Mann-Whitney tests were conducted to compare material loss between groups.


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 33 - 40
1 Jul 2020
Gustafson JA Pourzal R Levine BR Jacobs JJ Lundberg HJ

Aims

The aim of this study was to develop a novel computational model for estimating head/stem taper mechanics during different simulated assembly conditions.

Methods

Finite element models of generic cobalt-chromium (CoCr) heads on a titanium stem taper were developed and driven using dynamic assembly loads collected from clinicians. To verify contact mechanics at the taper interface, comparisons of deformed microgroove characteristics (height and width of microgrooves) were made between model estimates with those measured from five retrieved implants. Additionally, these models were used to assess the role of assembly technique—one-hit versus three-hits—on the taper interlock mechanical behaviour.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 13 - 13
1 Oct 2019
Gustafson JA Levine BR Jacobs JJ Pourzal R Lundberg HJ
Full Access

Introduction

Improper seating during head/stem assembly can lead to unintended micromotion between the femoral head and stem taper—resulting in fretting corrosion and implant failure.1 There is no consensus—either by manufacturers or by the surgical community—on what head/stem taper assembly method maximizes modular junction stability in total hip arthroplasty (THA). A 2018 clinical survey2 found that orthopedic surgeons prefer applying one strike or three, subsequent strikes when assembling head/stem taper. However, it has been suggested that additional strikes may lead to decreased interference strength. Additionally, the taper surface finish—micro-grooves—has been shown to affect taper interference strength and may be influenced by assembly method. The objective of this study was to employ a novel, micro-grooved finite element (FEA) model of the hip taper interface and assess the role of head/stem assembly method—one vs three strikes—on modular taper junction stability.

Methods

A two-dimensional, axisymmetric FEA model representative of a CoCrMo femoral head taper and Ti6Al4V stem taper was created using median geometrical measurements taken from over 100 retrieved implants.3 Surface finish—micro-grooves—of the head/stem taper were modeled using a sinusoidal function with amplitude and period corresponding to retrieval measurements of micro-groove height and spacing, respectively. Two stem taper micro-groove geometries— “rough” and “smooth”—were modeled corresponding to the median and 5th percentile height and spacing measurements from retrievals. All models had a 3' (0.05°), proximal-locked angular mismatch between the tapers.

To simulate implant assembly during surgery, multiple dynamic loads (4kN, 8kN, and 12kN) were applied to the femoral head taper in a sequence of one or three strikes. The input load profile (Figure 1) used for both cases was collected from surgeons assembling an experimental setup with a three-dimensional load sensor. Models were assembled and meshed in ABAQUS Standard (v 6.17) using four-node linear hexahedral, reduced integration elements. Friction was modeled between the stem and head taper using surface-to-surface formulation with penalty contact (µ=0.2). A total of 12 implicit, dynamic simulations (3 loads × 2 assembly sequences × 2 stem taper surface finishes) were run, with 2 static simulations at 4kN for evaluating inertial effects. Outcome variables included contact area, contact pressure, equivalent plastic strain, and pull-off force.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_12 | Pages 42 - 42
1 Jun 2017
Della Valle C Fillingham Y Bohl D Kelly M Hall D Pourzal R Jacobs J
Full Access

Recently, corrosion at the head-neck junction in metal-on-polyethylene bearing total hip arthroplasty (THA) has been recognized as a cause of adverse local tissue reactions (ALTR). Serum metal levels have been advocated as a tool for the diagnosis of ALTR, however no prior studies have specifically examined their utility. The purpose of this study was to determine the optimal cut-off values for serum cobalt and chromium in diagnosing ALTR after metal-on-polyethylene bearing THA.

We reviewed 447 consecutive patients with serum metal levels tested at our institution and identified 62 with a metal-on-polyethylene bearing who had axial imaging or underwent reoperation to confirm the presence or absence of ALTR. Receiver operating characteristic curves were produced to identify cut-off thresholds to optimize sensitivity and diagnostic test performance was characterized.

42 Of the 62 patients (66%) were positive for an ALTR. The best test for the diagnosis of ALTR was the serum cobalt level (area under the curve [AUC]=99%). A threshold cut-off of ≥ 1.0 ng/ml had a sensitivity of 100%, specificity of 90%, positive predictive value (PPV) of 96%, and negative predictive value (NPV) of 100%. Serum chromium levels were also diagnostic (AUC=87%). A threshold cut-off of ≥ 0.15 ng/ml had a sensitivity of 100%, specificity of 50%, PPV of 81%, and NPV of 100%. Finally, serum cobalt to chromium ratio was also helpful for diagnosis (AUC=90%). A threshold cut-off of 1.4 for the cobalt to chromium ratio offered a sensitivity of 93%, specificity of 70%, PPV of 87%, and NPV of 82%.

Measurement of serum cobalt with a threshold value of 1.0 ng/ml in our experience is the best test for identifying the presence of ALTR in patients with a metal-on-polyethylene THA. Measurement of chromium and the ratio of cobalt to chromium are also of value.