Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 136 - 136
1 Sep 2012
Pohl A Solomon L
Full Access

Patients with pelvic and acetabular fractures have a high risk of developing thromboembolic complications. Despite routine screening, the risk of PE remains high and may develop in patients with negative DVT screening. The search for a means to identify the patient ‘at risk’ has been elusive.

537 consecutive patients, referred to Royal Adelaide Hospital over a 20 year period for treatment of pelvic and acetabular fractures, were evaluated prospectively for pulmonary embolus (PE). 352 patients referred directly to the author were treated with variable dose heparin as prophylaxis to venous thromboembolic (VTE) disease. 184 patients primarily admitted under the general surgeons or to ITU, prior to referral to the author, were treated with fixed dose heparin or Enoxaparin. All patients were followed prospectively to determine the rate of pulmonary embolus. The heparin dosage requirements of those who developed pulmonary emboli were compared to those who did not. Patients were also identified for whom a clinical diagnosis of deep venous thrombosis (DVT) was made during the study and their heparin dosage requirements were determined.

7 of 352 patients treated with variable dose heparin developed PE (1.98%). 13 of 184 patients treated with fixed dose heparin, Enoxaparin, or combinations, developed PE (7.06%). An incidental finding of DVT was made in 36 patients. Of these, 10 patients (2.8%) were treated with variable dose heparin and 26 patients (14.1%) with fixed dose heparin or Enoxaparin.

The average Injury Severity Score was higher in patients treated with variable dose heparin than those treated with fixed dose regimes. Patients treated with variable dose heparin who developed PE showed a progressively increasing heparin requirement. The majority of patients who did not develop PE (72%) showed a progressively decreasing heparin requirement (suggesting reversal of a prothrombotic state). 21% showed an initial increasing heparin requirement followed by a decreasing requirement (suggesting a prothrombotic state that was reversed, e.g. a DVT successfully treated by the increasing heparin dose provided by a variable dose regime). 4% manifested a static heparin requirement (suggesting maintenance of a prothrombotic state). 8 patients treated with variable dose heparin developed DVT. 6/8 patients manifested a phase of progressively increasing heparin requirement, followed by a decreased requirement, and 2/8 patients manifested a sustained level of heparin requirement.

Patients with pelvic and acetabular fractures treated with variable dose heparin showed a rate of PE (1.98%). This is remarkably low compared with published rates of PE in such patients, and particularly compared with those patients treated only with chemoprophylaxis. The rate of PE was 3.5x higher and the rate of DVT was 5x higher in patients treated with fixed dose heparin or Enoxaparin. Patients who developed PE or DVT manifested an increasing heparin requirement. An increasing dosage of heparin may protect the ‘at risk’ patient from venous thromboembolism. Fixed dose unfractionated heparin/LMWH may be insufficient to treat the ‘at risk’ patient. An increasing heparin requirement may identify the patient ‘at risk’.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 205 - 205
1 May 2012
Solomon B Stevenson A Baird R Pohl A
Full Access

Open reduction and internal fixation of tibial plateau fractures is traditionally performed through an anterior, anterolateral or an anteromedial approach and more recently a posteromedial approach. These approaches allow satisfactory access to the majority of fracture patterns with the exception of posterolateral tibial plateau fractures.

To improve access to posterolateral tibial plateau fractures, we developed a posterolateral transfibular neck approach that exposes the tibial plateau between the posterior margin of the iliotibial band and the PCL. The approach can be combined with a posteromedial and/or an anteromedial approach to the tibial plateau. Since April 2007, we have used this approach to treat nine posterolateral tibial plateau fractures. All cases were followed up prospectively. Fracture reduction was assessed on radiographs, CT scans and arthroscopicaly. Maintenance of fracture reduction was assessed with radiostereometric analysis. Clinical outcomes were measured using Lysholm and KOOS scores.

Anatomic or near anatomic reduction was achieved in all cases. All fractures healed uneventfully and no loss of osteotomy or tibial plateau fracture reduction was identified on postoperative plain X-rays. In the cases monitored with radiostereometric analysis, the fracture fragments displaced less than 2 mm during the course of healing. All osteotomies healed either at the same rate or quicker than the tibial plateau fractures. There were no signs and no symptoms of lateral or posterolateral instability of the knee during or after the healing of the osteotomy. There were no complications related to the surgical approach, including the fibular head osteotomy. All wounds healed uneventfully and there were no symptoms related to the CPN. The patient reported outcomes recorded for this group at six months, using the Lysholm score (mean 71, median 77, range 42–95), compared favourably to the entire cohort of 33 patients treated operatively at our institution for a tibial plateau fracture and followed up prospectively during the same time period (mean 64, median 74, range 20–100).

The posterolateral transfibular approach for lateral tibial plateau fractures is an approach that should be considered for a certain specific pattern of fractures of the lateral tibial plateau. Our preliminary results demonstrated no complications through the learning curve of the development of this technique.