Abstract
Patients with pelvic and acetabular fractures have a high risk of developing thromboembolic complications. Despite routine screening, the risk of PE remains high and may develop in patients with negative DVT screening. The search for a means to identify the patient ‘at risk’ has been elusive.
537 consecutive patients, referred to Royal Adelaide Hospital over a 20 year period for treatment of pelvic and acetabular fractures, were evaluated prospectively for pulmonary embolus (PE). 352 patients referred directly to the author were treated with variable dose heparin as prophylaxis to venous thromboembolic (VTE) disease. 184 patients primarily admitted under the general surgeons or to ITU, prior to referral to the author, were treated with fixed dose heparin or Enoxaparin. All patients were followed prospectively to determine the rate of pulmonary embolus. The heparin dosage requirements of those who developed pulmonary emboli were compared to those who did not. Patients were also identified for whom a clinical diagnosis of deep venous thrombosis (DVT) was made during the study and their heparin dosage requirements were determined.
7 of 352 patients treated with variable dose heparin developed PE (1.98%). 13 of 184 patients treated with fixed dose heparin, Enoxaparin, or combinations, developed PE (7.06%). An incidental finding of DVT was made in 36 patients. Of these, 10 patients (2.8%) were treated with variable dose heparin and 26 patients (14.1%) with fixed dose heparin or Enoxaparin.
The average Injury Severity Score was higher in patients treated with variable dose heparin than those treated with fixed dose regimes. Patients treated with variable dose heparin who developed PE showed a progressively increasing heparin requirement. The majority of patients who did not develop PE (72%) showed a progressively decreasing heparin requirement (suggesting reversal of a prothrombotic state). 21% showed an initial increasing heparin requirement followed by a decreasing requirement (suggesting a prothrombotic state that was reversed, e.g. a DVT successfully treated by the increasing heparin dose provided by a variable dose regime). 4% manifested a static heparin requirement (suggesting maintenance of a prothrombotic state). 8 patients treated with variable dose heparin developed DVT. 6/8 patients manifested a phase of progressively increasing heparin requirement, followed by a decreased requirement, and 2/8 patients manifested a sustained level of heparin requirement.
Patients with pelvic and acetabular fractures treated with variable dose heparin showed a rate of PE (1.98%). This is remarkably low compared with published rates of PE in such patients, and particularly compared with those patients treated only with chemoprophylaxis. The rate of PE was 3.5x higher and the rate of DVT was 5x higher in patients treated with fixed dose heparin or Enoxaparin. Patients who developed PE or DVT manifested an increasing heparin requirement. An increasing dosage of heparin may protect the ‘at risk’ patient from venous thromboembolism. Fixed dose unfractionated heparin/LMWH may be insufficient to treat the ‘at risk’ patient. An increasing heparin requirement may identify the patient ‘at risk’.