Advances in military surgery have led to significant numbers of soldiers surviving with bilateral above knee amputations. Despite advances in prosthetic design and high quality rehabilitation not all amputees succesfully ambulate. Five patients (10 stumps) with persisting socket fit issues were selected for osseointegration (OI) using a transcutaneous prosthesis with press-fit fixation in the residual femur. Prior to surgery all five were primarily/exclusively wheelchair users. Follow up was from 7 to 25 months (mean 12.2). There were no deaths, episodes of sepsis or osteomyelitis. There was one proximal femoral fracture secondary to a fall. One stump required soft tissue refashioning. Cellulitis needing oral antibiotics occurred in four cases. Functional improvement occurred in all cases with all currently primarily prosthetic users, the majority all day users. Three patients are still completing rehabilitation. Six minute walk tests (SMWT) improved by a mean of 20%. Three are now graded mobility SIGAM F (normal gait) and two SIGAM D-b (limited terrain; with one stick). This cohort suggests that OI may have a role in the treatment of military blast amputees. A larger scale clinical evaluation is planned in the UK blast related amputee population to further establish the benefits and risks of this technique
2014 sees the withdrawal of British troops from Afghanistan. It is documented that the conflict is associated with increased survivability form military related trauma attributed to personal protection equipment, improved on the ground medical care and rapid extraction of the casualty. However, the consequence is that of complex trauma patients and in particular trauma-related amputations (TA). With the draw down a complete picture is now possible. This report quantity's and quality's the extent and nature of TA from Afghanistan by means of a retrospective analysis of an accurate database of TA casualties forms this conflict. This will provide useful information for the resources required for managing these complex patients in the future. Data extracted included number of amputations, locations and level of amputations and date of injury. 265 casualties sustained 416 amputations. The commonest injury pattern per casualty seen was that of a single amputation. The commonest level of amputation was trans-femoral (TF)(153), followed by 143 trans-tibial (TT)(143. Single amputations associated with TT injuries. TF amputations were commonest in double and triple amputees. The commonest double amputee pattern was TF:TF casualty. Casualties form this conflict are more likely to have greater number of amputations and higher levels.
The conflict in Afghanistan has been epitomised by the emergence of the Improvised Explosive Device (IEDs). Improvements in protection and medical treatments have resulted in increasing numbers of casualties surviving with complex lower extremity injuries. To date, there has been no analysis of foot and ankle blast injuries as a result of IEDs. Therefore the aims of this study are to report the pattern of injury and determine which factors were associated with a poor clinical outcome. Using a prospective trauma registry, UK Service Personnel who sustained lower leg injuries following an under-vehicle explosion between Jan 2006 and Dec 2008 were identified. Patient demographics, injury severity, the nature of lower limb injury and clinical management was recorded. Clinical endpoints were determined by
need for amputation and need for ongoing clinical output at mean 33.0 months follow-up.Background
Methods
The defining weapon of the conflicts in Iraq and Afghanistan has been the Improvised Explosive Device (IEDs). When detonated under a vehicle, they result in significant axial loading to the lower limbs, resulting in devastating injuries. Due to the absence of clinical blast data, automotive injury data using the Abbreviated Injury Score (AIS) has been extrapolated to define current NATO injury thresholds for Anti-vehicle (AV) mine tests. We hypothesized that AIS, being a marker of fatality rather than disability would be a worse predictor of poor clinical outcome compared to the lower limb specific Foot and Ankle Severity Score (FASS). Using a prospectively collected trauma database, we identified UK Service Personnel sustaining lower leg injuries from under-vehicle explosions from Jan 2006–Dec 2008. A full review of all medical documentation was performed to determine patient demographics and the severity of lower leg injury, as assessed by AIS and FASS. Clinical endpoints were defined as (i) need for amputation or (ii) poor clinical outcome. Statistical models were developed in order to explore the relationship between the scoring systems and clinical endpoints. 63 UK casualties (89 limbs) were identified with a lower limb injury following under-vehicle explosion. The mean age of the casualty was 26.0 yrs. At 33.6 months follow-up, 29.1% (26/89) required an amputation and a further 74.6% (41/89) having a poor clinical outcome (amputation or ongoing clinical problems). Only 9(14%) casualties were deemed medically fit to return to full military duty. ROC analysis revealed that both AIS=2 and FASS=4 could predict the risk of amputation, with FASS = 4 demonstrating greater specificity (43% vs 20%) and greater positive predictive value (72% vs 32%). In predicting poor clinical outcome, FASS was significantly superior to AIS (p<0.01). Probit analysis revealed that a relationship could not be developed between AIS and the probability of a poor clinical outcome (p=0.25). Foot and ankle injuries following AV mine blast are associated with significant morbidity. Our study clearly demonstrates that AIS is not a predictor of long-term clinical outcome and that FASS would be a better quantitative measure of lower limb injury severity. There is a requirement to reassess the current injury criteria used to evaluate the potential of mitigation technologies to help reduce long-term disability in military personnel. Our study highlights the critical importance of utilising contemporary battlefield injury data in order to ensure that the evaluation of mitigation measures is appropriate to the injury profile and their long-term effects.
The conflict in Afghanistan has been epitomised by the emergence of the Improvised Explosive Device(IEDs). Improvements in medical treatments have resulted in increasing numbers of casualties surviving with complex lower extremity injuries. To date, there has been no analysis of foot and ankle blast injuries as a result of IEDs. Therefore the aims of this study are to firstly report the pattern of injury and secondly determine which factors were associated with a poor clinical outcome in order to focus future research. Using a prospective trauma registry, UK Service Personnel who sustained lower leg injuries following an under-vehicle explosion between Jan 2006 and Dec 2008 were identified. Patient demographics, injury severity, the nature of lower limb injury and clinical management was recorded. Clinical endpoints were determined by (i)need for amputation and (ii)need for ongoing clinical output at mean 33.0 months follow-up. 63 UK Service Personnel (89 injured limbs) were identified with lower leg injuries from explosion. 50% of casualties sustained multi-segmental injuries to the foot and ankle complex. 26(29%) limbs required amputation, with six amputated for chronic pain 18 months following injury. Regression analysis revealed that hindfoot injuries, open fractures and vascular injuries were independent predictors of amputation. Of the 69 limbs initially salvaged, the overall infection rate was 42%, osteomyelitis 11.6% and non-union rates was 21.7%. Symptomatic traumatic osteoarthritis was noted in 33.3% salvaged limbs. At final follow-up, 66(74%) of injured limbs had persisting symptoms related to their injury, with only 9(14%) fit to return to their pre-injury duties. This study demonstrates that foot and ankle injuries from IEDs are frequently associated with a high amputation rate and poor clinical outcome. Although, not life-threatening, they remain a source of long-term morbidity in an active population. Primary prevention of these injuries remain key in reducing the injury burden.
Anti-vehicle mines (AV) and Improvised Explosive Devices (IEDs) remain the most prevalent threat to Coalition troops operating in Iraq and Afghanistan. Detonation of these devices results in rapid deflection of the vehicle floor resulting in severe injuries to calcaneus. Anecdotally referred to as a ‘deck-slap’ injury, there have been no studies evaluating the pattern of injury or the effect of these potentially devastating injuries since World War II. Therefore the aim of this study is to determine the pattern of injury, medical management and functional outcome of UK Service Personnel sustaining calcaneal injuries from under-vehicle explosions. From Jan 2006 – Dec 2008, utilising a prospectively collected trauma registry (Joint Theatre Trauma Registry, JTTR), the records of all UK Service Personnel sustaining a fractured calcaneus from a vehicle explosion were identified for in depth review. For each patient, demographic data, New Injury Severity Score (NISS), and associated injuries were recorded. In addition, the pattern of calcaneal fracture, the method of stabilisation, local complications and need for amputation was noted. Functional recovery was related to the ability of the casualty to return to military duties. Forty calcaneal fractures (30 patients) were identified in this study. Mean follow-up was 33.2 months. The median NISS was 17, with the lower extremity the most severely injured body region in 90% of cases. Nine (30%) had an associated spinal injury. The overall amputation rate was 45% (18/40); 11 limbs (28%) were amputated primarily, with a further 3 amputated on return to the UK. Four (10%) casualties required a delayed amputation for chronic pain (mean 19.5 months). Of the 29 calcaneal fractures salvaged at the field hospital, wound infection developed in 11 (38%). At final follow-up, only 2 (6%) were able to return to full military duty with 23 (76%) only fit for sedentary work or unfit any military duty. Calcaneal injuries following under-vehicle explosions are commonly associated with significant polytrauma, of which the lower limb injury is the most severe. Spinal injuries were frequently associated with this injury pattern and it is recommended that radiological evaluation of the spine be performed on all patients presenting with calcaneal injuries from this injury mechanism. The severity of the hindfoot injury witnessed is reflected by the high infection rate and amputation rate seen in this cohort of patients. Given the high physical demands of a young, active military population, only a small proportion of casualties were able to return to pre-injury duties. We believe that the key to the reduction in the injury burden to the soldier lies in the primary prevention of this injury. Work is currently on going to develop experimental and numerical models of this injury in order to drive future mitigation strategies.
Changes in armour reinforcement of military vehicles have resulted in a changed injury pattern. Injuries which would previously have resulted in amputation are now less severe, and after initial debridement and temporary fixation the foot can now be saved. New patterns of injuries are emerging often as a part of potentially survivable poly-trauma. We describe a small series of these injuries. The techniques and results of late reconstruction are presented. We also discuss specific problems of managing patients with potential contamination with unusual organisms.