Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 178 - 178
1 Jul 2014
Zheng K Scholes C Lynch J Parker D Li Q
Full Access

Summary Statement

An MRI-derived subject-specific finite element model of a knee joint was loaded with subject-specific kinetic data to investigate stress and strain distribution in knee cartilage during the stance phase of gait in-vivo.

Introduction

Finite element analysis (FEA) has been widely used to predict the local stress and strain distribution at the tibiofemoral joint to study the effects of ligament injury, meniscus injury and cartilage defects on soft tissue loading under different loading conditions. Previous studies have focused on static FEA of the tibiofemoral joint, with few attempts to conduct subject-specific FEA on the knee during physical activity. In one FEA study utilising subject-specific loading during gait, the knee was simplified by using linear springs to represent ligaments. To address the gap that no studies have performed subject-specific FEA at the tibiofemoral joint with detailed structures, the present study aims to develop a highly detailed subject-specific FE model of knee joint to precisely simulate the stress distribution at knee cartilage during the stance phase of the gait cycle.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 53 - 53
1 Mar 2013
Hopkins S Knapp K Parker D Yusof R
Full Access

Introduction

DXA areal-bone-mineral-density (aBMD) is used clinically as a surrogate for true volumetric-BMD to assess bone fragility. Trabecular-Bone-Score (TBS) provides an assessment of bone quality based on the DXA-derived two-dimensional images. Calculated from bone area (BA), aBMD may under- or overestimate true BMD in individuals with relatively low and high BA respectively. This study investigated relationships between BA at the lumbar-spine (L1–L4) and measurements of BMD and TBS.

Method

Lumbar spine scans were performed (GE Lunar Prodigy) on 114 women (mean 53 yrs). The study population was divided by L1–L4 BA using the 20th and 80th centiles, and BMD v TBS correlations calculated for the subgroups. BMD and TBS, converted to Z-scores, were correlated with BA.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 54 - 54
1 Mar 2013
Hopkins S Knapp K Parker D Yusof R
Full Access

Introduction

Precision error (PE) in Dual Energy X-Ray Absorptiometry (DXA) is important for accurate monitoring of changes in Bone-Mineral-Density (BMD). It has been demonstrated that BMD PE increases with increasing BMI. In vivo PE for the Trabecular-Bone-Score (TBS) has not been reported. This study aimed to evaluate the short-term PE (STPE)) of BMD and TBS and to investigate the effect of obesity on DXA PE.

Method

DXA lumbar spine scans (L1–L4) were performed using GE Lunar Prodigy. STPE was measured in 91 women (Group A) at a single visit by duplicating scans with repositioning in-between. PE was calculated as the percentage coefficient of variation (%CV). Group A was sub-divided into four groups based on BMI (A.1. <25kg/m2, A.2. 25–29.9kg/m2, A.3. 30–35kg/m2 and A.4. >35kg/m2) to assess the effect of obesity on STPE. Abnormally different vertebrae were excluded from the analysis in accordance with The International Society for Clinical Densitometry (ISCD) recommendations.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 113 - 113
1 Aug 2012
Negus J Mani B Scholes C Parker D
Full Access

Medical and allied health staff are beginning to incorporate the Nintendo Wii-Fit into musculoskeletal rehabilitation protocols. One potential application is the assessment of standing balance following Orthopaedic lower limb surgery. The Wii Balance Board (WBB) has been shown to be a valid equivalent to a laboratory grade force platform for the assessment of standing balance. Our objective was to investigate the validity and reliability of the balance tests included with the Wii-Fit software.

Initially, a single subject performed multiple repeats of a standing balance test. The data was collected simultaneously from a commercial force platform using its integrated software that measured centre of pressure and from the WBB using the Wii-Fit software that generated a percentage score. The data from each was compared and analyzed, applying the equations of known, validated standing balance measurements.

Then, thirty subjects free of lower limb pathology performed a series of standing balance tests combining single leg and double leg stance with their eyes open and then closed. Data was collected from one set of trials on the WBB using the Wii-Fit software and another using bespoke centre of pressure software on a laptop computer. The tests were then repeated on a second occasion within 2 weeks.

The algorithm used by the Wii-Fit software to generate the ‘Stillness’ standing balance score was calculated with a predictive value (R squared) of 0.94. This correlated well to a known, valid measure of standing balance.

Test-retest reliability was examined for the data from both pieces of software. Both demonstrated good-to-excellent test-retest reliability within ‘software’. The laptop data was transformed using the algorithm and the between ‘software’ reliability was calculated as good-to-excellent.

The Wii-Fit software collects standing balance data from the WBB at a fraction of the cost of laboratory grade systems. The score generated by the Wii-Fit software is reliable and valid as an overall assessment of standing balance. Although its application would be limited for detailed assessment of balance disorders, it could still provide surgeons with an affordable, clinic based balance-screening tool. This could form part of an assessment protocol following lower limb surgery.