Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Applied filters
Research

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 46 - 46
14 Nov 2024
Teixeira SPB Pardo A Taboada P Wolleb M Snedeker J Reis RL Gomes MME Domingues RMA
Full Access

Introduction

PIEZO mechanoreceptors are increasingly recognized to play critical roles in fundamental physiological processes like proprioception, touch, or tendon biomechanics. However, their gating mechanisms and downstream signaling are still not completely understood, mainly due to the lack of effective tools to probe these processes. Here, we developed new tailor-made nanoswitches enabling wireless targeted actuation on PIEZO1 by combining molecular imprinting concepts with magnetic systems.

Method

Two epitopes from functionally relevant domains of PIEZO1 were rationally selected in silico and used as templates for synthesizing molecularly imprinted nanoparticles (MINPs). Highly-responsive superparamagnetic zinc-doped iron oxide nanoparticles were incorporated into MINPs to grant them magnetic responsiveness. Endothelial cells (ECs) and adipose tissue-derived stem cells (ASCs) incubated with each type of MINP were cultured under or without the application of cyclical magnetomechanical stimulation. Downstream effects of PIEZO1 actuation on cell mechanotransduction signaling and stem cell fate were screened by analyzing gene expression profiles.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 74 - 74
2 Jan 2024
Peniche Silva C Dominguez R Bakht S Pardo A Joris V Gonçalves A Texeira S Balmayor E Gomes M van Griensven M
Full Access

Tendons and tendon-to-bone entheses don't usually regenerate after injury, and the hierarchical organization of such tissues makes them challenging sites of study for tissue engineers. In this study, we have tried a novel approach using miRNA and a bioactive bioink to stimulate the regeneration of the enthesis. microRNAs (miRNAs) are short, non-coding sequences of RNA that act as post-transcriptional regulators of gene and protein expression [1]. Mimics or inhibitors of specific miRNAs can be used to restore lost functions at the cell level or improve healing at the tissue level [2,3]. We characterized the healing of a rat patellar enthesis and found that miRNA-16-5p was upregulated in the fibrotic portion of the injured tissue 10 days after the injury. Based on the reported interactions of miRNA-16-5p with the TGF-β pathway via targeting of SMAD3, we aimed to explore the effects of miRNA-16-5p mimics on the tenogenic differentiation of adipose-derived stem cells (ASCs) encapsulated in a bioactive bioink [4,5]. Bioinks with different properties are used for the 3D printing of biomimetic constructs. By integrating cells, materials, and bioactive molecules it is possible to tailor the regenerative capacity of the ink to meet the particular requirements of the tissue to engineer [5]. Here we have encapsulated ASCs in a gelatin-methacryloyl (GelMa) bioink that incorporates miR-16-5p mimics and magnetically responsive microfibers (MRFs). When the bioink is crosslinked in the presence of a magnetic field, the MRFs align unidirectionally to create an anisotropic construct with the ability to promote the tenogenic differentiation of the encapsulated ASCs. Additionally, the obtained GelMA hydrogels retained the encapsulated miRNA probes, which permitted the effective 3D transfection of the ASC and therefore, the regulation of gene expression, allowing to investigate the effects of the miR-16-5p mimics on the tenogenic differentiation of the ASCs in a biomimetic scenario.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 59 - 59
2 Jan 2024
Bakht S Pardo A Reis R Domingues R Gomes M
Full Access

A major obstacle in biofabrication is replicating the organization of the extracellular matrix and cellular patterns found in anisotropic tissues within bioengineered constructs. While magnetically-assisted 3D bioprinting techniques have the potential to create scaffolds that mimic natural biological structures, they currently lack the ability to accurately control the dispersion of magnetic substances within the bioinks without compromising the fidelity of the intended composite. To overcome this dichotomy, the concepts of magnetically- and matrix-assisted 3D bioprinting are combined here. This method preserves the resolution of printed structures by keeping low viscosity bioinks uncrosslinked during printing, which allows for the arrangement of magnetically-responsive microfibers without compromising the structural integrity of the design. Solidification is induced after the microfibers are arranged in the desired pattern. Furthermore, the precise design of these magnetic microfillers permits the utilization of low levels of inorganic materials and weak magnetic field strengths, which reduces the potential risks that may be associated with their use. The effectiveness of this approach is evaluated in the context of tendon tissue engineering, and the results demonstrate that combining the tendons like anisotropic fibrous microstructure with remote magneto-mechanical stimulation during in vitro maturation provides both biochemical and biophysical cues that effectively guide human adipose-derived stem cells towards a tenogenic phenotype In summary, the developed strategy allows the fabrication of anisotropic high-resolution magnetic composites with remote stimulation functionalities, opening new horizons for tissue engineering applications.

Acknowledgments: ERC Grant CoG MagTendon nr 772817, BioChips PoC project nr 10106930, (PD/BD/129403/2017), (CEECIND/01375/2017), (2020.03410.CEECIND), (2022.05526.PTDC), (ED481B2019/025).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 13 - 13
2 Jan 2024
Teixeira S Pardo A Bakht S Gomez-Florit M Reis R Gomes M Domingues R
Full Access

Tendon diseases are prevalent health concerns for which current therapies present limited success, in part due to the intrinsically low regenerative ability of tendons. Therefore, tissue engineering presents a potential to improve this outcome. Here, we hypothesize that a concurrent control over both biophysical and biochemical stimuli will boost the tenogenic commitment of stem cells, thus promoting regeneration. To achieve this, we combine molecularly imprinted nanoparticles (MINPs), which act as artificial amplifiers for endogenous growth factor (GF) activity, with bioinspired anisotropic hydrogels2 to manufacture 3D tenogenic constructs. MINPs were solid phase-imprinted using a TGF-β3 epitope as template and their affinity for the target was assessed by SPR and dot blot. Magnetically-responsive microfibers were produced by cryosectioning electrospun meshes containing iron oxide nanoparticles. The constructs were prepared by encapsulating adipose tissue-derived stem cells (ASCs), microfibers, and MINPs within gelatin hydrogels, while aligning the microfibers with an external magnetostatic field during gelation. This allows an effective modulation of hydrogel fibrillar topography, mimicking the native tissue's anisotropic architecture. Cell responses were analyzed by multiplex immunoassay, quantitative polymerase chain reaction, and immunocytochemistry. MINPs showed an affinity for the template comparable to monoclonal antibodies. Encapsulated ASCs acquired an elongated shape and predominant orientation along the alignment direction. Cellular studies revealed that combining MINPs with aligned microfibers increased TGF-β signaling via non-canonical Akt/ERK pathways and upregulated tendon-associated gene expression, contrasting with randomly oriented gels. Immunostaining of tendon-related proteins presented analogous outcomes, corroborating our hypothesis.

Our results thus demonstrate that microstructural cues and biological signals synergistically direct stem cell fate commitment, suggesting that this strategy holds potential for improving tendon healing and might be adaptable for other biological tissues. The proposed concept highlights the GF-sequestering ability of MINPs which allows a cost-effective alternative to recombinant GF supplementation, potentially decreasing the translational costs of tissue engineering strategies.

Acknowledgements: The authors acknowledge the funding from the European Union's Horizon 2020 under grant No. 772817; from FCT/MCTES for scholarships PD/BD/143039/2018 & COVID/BD/153025/2022 (S.P.B.T.), and PD/BD/129403/2017 (S.M.B.), co-financed by POCH and NORTE 2020, under the Portugal 2020 partnership agreement through the European Social Fund, for contract 2020.03410.CEECIND (R.M.A.D.) and project 2022.05526.PTDC; and from Xunta de Galicia for grant ED481B2019/025 (A.P.).