Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 222 - 222
1 Sep 2012
Li C Hussain A Pamu J Kamali A
Full Access

INTRODUCTION

Hip wear simulator test results could be affected by many non-bearing related factors such as fixation surface conditions, equipment calibration and component set-up. In an effort to improve the accuracy, reliability and repeatability of hip simulator test, a quality management system has been established at the IDC hip tribology laboratory, which has been accredited by UKAS (United Kingdom Accreditation Service) in accordance with the recognised international standard ISO17025. This study demonstrates that under well-controlled laboratory and testing conditions, satisfactory repeatability can be achieved during hip simulator studies.

METHODS

Between 2008 to 2010, ten 50 mm Birmingham Hip Resurfacing (BHR) devices were tested by the IDC tribology laboratory using two ProSim hip wear simulators in three different tests (T1, T2 and T3). All tests were performed following the same IDC testing protocols at 1 Hz frequency for 5 million cycles (Mc) or until after a steady state was reached. Paul type stance phase loadings with a maximum load of 3 kN and a swing phase load of 0.3 kN was used. The flexion and extension angles were 30 and 15 degree. The internal/external rotation angel was ±10 degree. Wear was measured gravimetrically using an analytical balance (Mettler, Toledo xp504) with an accuracy of 0.1 mg.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 84 - 84
1 Sep 2012
Pamu J Hussain A Daniel J Kamali A Li C
Full Access

Introduction

Ion analysis has been used as one of the key indicators to assess the performance of MoM devices in patients. Modular devices, in particular having larger overall surface area (the stem and sleeve), and locking interfaces (head – bore, sleeve- taper and sleeve-bore, stem-taper surfaces) than other MoM devices are expected to release greater number of ions. Concerns have been expressed that the ion release at the taper junction might be a potential cause leading to the failure of the implant [Garbuz et al, 2010].

The aim of this study was to look into the wear and the associated ion release from the taper junction and the articulating surface of modular devices.

Method

For the first time a novel design has been used to isolate the taper junction on modular devices on the hip simulators in order to compare the wear at the taper junction and articulating surface. The taper junction has been isolated in a small gaiter, while the head and cup were contained in a large gaiter. CoCrMo sleeves having an offset of +8 mm have been used on 50 mm modular heads along with Ti6Al4V stems. The acetabular components were standard BHR cups. Three devices (Smith & Nephew, UK) have been tested with newborn calf serum as a lubricant (in the large gaiter) and also as the medium containing the taper junction (in the small gaiter). The serum samples from the articulating surface and taper junction were analysed using HR-ICPMS. The locking interfaces at the taper junction have been left intact throughout the duration of the test. Both the head and the cup have been tested under anatomical conditions using the standard implant development centre's (IDC) profile for 2 million cycles (Mc). The lubricant was newborn calf serum with 0.2% sodium azide diluted with de-ionised water to achieve protein concentration of 20 mg/ml. The flexion/extension was 30°/15° and the internal/external rotation was ±10°. The force was Paul-type stance phase loading with a maximum load of 3 kN and a standard ISO swing phase load of 0.3 kN. The frequency was 1 Hz, with an 8 hour stop after every 16 hours of testing.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 71 - 71
1 Sep 2012
Hussain A Kamali A Li C Pamu J
Full Access

Metal-on-Metal devices generate significantly lower volumetric wear than conventional total hip replacements. However, clinically some patients may suffer some form of laxity in their joints leading to subluxation of the joint, which in turn may cause edge loading of an implant thereby increasing the chances of failure due to higher than expected wear.

In this study, the effect of subluxation on MoM implant wear was investigated on a hip joint simulator.

Materials & Methods

Two groups of 44 mm MoM devices were tested, n=3 in each group. The devices were subjected to 1 and 2 mm of subluxation. The flexion/extension was 30° and 15° respectively, internal/external rotation was ±10°, and cup inclination was 35°. The force was Paul type stance phase loading with a maximum load of 3 kN, with ISO swing phase load of 0.3 kN, run at 1 Hz.

The test was carried out on a ProSim deep flexion & subluxation hip wear simulator (SimSol, UK). Rather than separating the head and the cup (microseparation), or reducing the swing phase load, this simulator is equipped with a novel mechanism to achieve translation of the head, while subjecting the devices to subluxation. During the swing phase, a controlled lateral force necessary for the translation of the head is applied by a cam mechanism, head retraction will then take place on heel strike.

The lubricant used was new born calf serum with 0.2 wt. % sodium azide concentration diluted with de-ionised water to achieve average protein concentration of 20 g/l. Lubricant was changed every 250k cycles. Gravimetric wear measurements have been taken at 0.25 & 0.5 Mc stages.

Results

Tests conducted with 1mm (Group 1) and 2mm (Group 2) subluxation significantly increased volumetric wear compared to standard hip simulator tests [1]. At 0.5 million cycles, group 1 and 2 produced an average volume loss of 4.38±0.98 mm3 (95% CL) and 7.07±1.64 mm3 (95% CL) respectively.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 239 - 239
1 Sep 2012
Hussain A Hussain A Kamali A Li C Pamu J Ashton R
Full Access

INTRODUCTION

Analysis of retrieved ceramic components have shown areas of localized ‘stripe wear’, which have been attributed to joint laxity and/or impingement resulting in subluxation of the head, causing wear on the edge of the cup. Studies have been conducted into the effects of mild subluxation, however few in vitro tests have looked at severe subluxation. The aim of this study was to develop a more clinically relevant subluxation protocol.

MATERIALS & METHODS

Seven (Subluxation n=4; standard test n=3) of 36mm Biolox Forte (R3, Smith & Nephew) ceramic devices were tested for 0.5m cycles (mc). Two of the subluxed joints were further tested to 1 Mc. The devices were subjected to subluxation under standard testing conditions. The flex/ext was 30° and 15° respectively, with internal/external rotation of ±10°. The force was Paul type stance phase loading with a maximum load of 3 kN, and a standard ISO swing phase load of 0.3 kN at 1 Hz.

The test was conducted on a ProSim hip joint wear simulator (SimSol, UK). The simulator is equipped with a novel mechanism to achieve translation of the head, to achieve subluxation. During the ISO swing phase load of 0.3kN, a controlled lateral force required for the translation of the head is applied by a cam mechanism, head retraction then occurs during heel strike.

The lubricant used was new born calf serum diluted with de-ionised water to achieve average protein concentration of 20 g/l, with 0.2 wt % concentration NaN3, and changed every 250k cycles. Measurements have been taken at 0.5 & 1 mc stages.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 108 - 108
1 Jun 2012
Pamu J Kamali A Daniel J Hussain A Li C
Full Access

Introduction

Hip implant research has been carried out for decades using hip simulators to reflect situations in vivo. With regards to metal on metal (MoM) implant testing, it has been reported that there is no significant difference between the wear generated by various cobalt chromium (CoCr) microstructures. On the contrary, higher wear, metal ion levels and subsequent failures have been reported in heat treated (high carbon, low carbide) devices compared to as cast (high carbon, high carbide) devices in vivo. During testing, the bearing surfaces may be masked from the effect of microstructure on wear under fast and continuous cycles, while in vivo, the extensive range of kinetics and kinematics, stop/start motion, varying walking frequencies could break down the fluid film, resulting in a less favourable lubrication regime. The aims of this study were to develop a more physiologically relevant hip simulator test protocol, and investigate the effect of microstructure on wear.

Materials & Methods

Three pairs of 50mm as cast (AC) and four pairs of 50mm double heat treated (DHT) CoCr MoM devices were tested in a ProSim hip simulator. In order to determine the frequency for testing, Patients' activities have been monitored using a Step Activity Monitor (SAM) device. The data showed a relatively slower walking pace (frequency) than that used in the hip simulator studies. The new frequency, along with stop/start motion and various kinetics and kinematics profiles have been used in putting together a more physiologically relevant hip simulator test protocol. The lubricant used in this study was new born calf serum with 0.2 % (w/v) sodium azide concentration diluted with de-ionised water to achieve an average protein concentration of 20 g/l. Gravimetric measurements have been taken at 0.5, 1, 1.5 & 2 million cycle (Mc) stages and ion analysis has been carried out on the serum samples.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 221 - 221
1 May 2011
Hussain A Kamali A Li C Pamu J Daniel J
Full Access

Introduction: In vitro studies have shown that low clearance bearings have the potential to generate low wear. However, cementless acetabular cups are designed to be press fitted into the acetabulum, which could generate compressive stresses and non-uniform cup deformation during implantation. Deformation of the low clearance acetabular cups could also potentially lead to clamping or seizure of the joints and high frictional torque leading to implant failure. To obtain the benefit of low clearance and low wear, without compromising the tribological performance of the cup, a deflection compensation (DefCom) cup was designed. DefCom offers the benefits of low wear associated with low clearance components whilst reducing the risk of component seizure and high frictional torque due to component deformation.

Aim: The study was conducted in order to evaluate the tribological performance of a DefCom acetabular cup.

Materials and Methods: 50 mm diameter metal-on-metal DefCom hip resurfacing cups were used in this study. The components had an average clearance of 105±3 μm at the articulating sphere. Three of the cups were deformed plastically, along the ilial-ischeal column of the acetabulum. The degree of deformation was measured using the coordinate measuring machine, measuring the change in diameter of the cup in the direction of deformation. The cups were deformed on average by 65μm. The devices were tested in a ProSim hip wear Simulator for 5 million cycles. The lubricant was new born calf serum with 0.2% sodium azide diluted with de-ionised water to achieve protein concentration of 20 mg/ml. The flexion/extension was 30° and 15° with an internal/external rotation of ±10°. The force was Paul-type stance phase loading with a maximum load of 3 kN and a swing phase load of 0.3 kN, conducted at 1 Hz.

Results: The DefCom and deformed DefCom components showed a similar bi-phasic wear pattern to that of the BHR devices. Showing a period of ‘running in’ wear up to 1 Mc and then a reduced wear rate during the steady state phase from 1 Mc onwards. The DefCom devices produced a wear rate of 0.24 mm3/Mc, whilst the deformed DefCom joints produced a wear rate of 0.48 mm3/Mc for the running-in phase. Steady state wear was achieved for all joints after 1 Mc. The average steady state wear (1.0–5.0 Mc) rate for the DefCom joints was 0.12 mm3/Mc, with 0.14 mm3/Mc for the deformed joints joint. The wear rate for the non-deformed DefCom device is lower than that generated by the BHR, which were 0.72 mm3/Mc and 0.18 mm3/Mc for the running-in and steady state wear, respectively.

Conclusion: The study has shown that the DefCom acetabular cup has the potential to reduce the initial running-in wear by reducing the clearance at the contact area between the head and cup, whilst compensating for deformation that may occur during cup implantation.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 519 - 519
1 Oct 2010
Hussain A Daniel J Kamali A Li C Pamu J
Full Access

Introduction: The accepted method of assessing wear following a hip simulator test has been to use a precision balance. As the MoM devices produce significantly less weight loss than hard-on-soft bearings, the measurements of MoM devices are now almost at the detection limit of many balances. There is a need for a method that can be used in conjunction with gravimetric analysis that will provide an accurate assessment of ion concentration levels that will support the gravimetric measurements.

Aim: To develop a method to assess wear using metal ion analysis in order to support gravimetric measurements of metal on metal devices.

Materials and methods: Hip simulator test: Three pairs of 50 mm diameter as cast CoCr MoM devices were tested in a ProSim hip wear simulator (SimSol Stockport/UK) under physiologically relevant conditions. The lubricant was new born calf serum with 0.2 % sodium azide concentration diluted with de-ionised water for protein concentration of 20 g/l. Stop-start motion was implemented every 100 cycles. Lubricant changed every 125 k cycles. The frequency was 0.5 Hz. Wear was assessed gravimetrically at every 0.5 million cycles (Mc) interval.

Ion analysis: Serum was collected from test station and allowed to settle for 12 hours. An aliquot of 20 ml from lubricant was collected. Each sample was centrifuged at 2500 g-force for 10 minutes. A 10 ml aliquot was collected from each sample and was further centrifuged at 2500 g-force for 10 minutes. 1.5 ml aliquot was collected and stored at −20 °C. A high resolution inductively-coupled plasma mass spectrometry instrument (ELEMENT, ThermoFinnigan MAT, Bremen/Germany) was then used for the analysis of metal ions.

Results and Discussion: The average cumulative metal ion levels at 0.5, 1 and 1.5 Mc showed similar trends in wear to that of the average cumulative weight loss assessed gravimetrically. There were similar biphasic wear trends in both metal ion levels and gravimetric weight losses. Other studies have also shown similar correlation between volume loss and ion concentration levels. The percentage distribution of Co, Cr and Mo in the metal ion samples are in close agreement with nominal chemical composition of the material tested.

Conclusion: This study showed that metal ion measurements can help to confirm gravimetrically measured material loss.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 399 - 399
1 Jul 2010
Kamali A Pamu J Hussain A Li C Daniel J Counsell L
Full Access

Introduction: To develop a more physiologically relevant hip simulator test protocol and study the effect of microstructure on the wear performance of as-cast (AC) and double heat treated (DHT) devices under the new protocol.

Methods: Three pairs of AC and four pairs of DHT 50 mm CoCr metal-on-metal (MoM) devices were tested. The lubricant used was bovine serum. Stop-start motion was implemented between the two sets of kinetics and kinematics that alternated every 100 cycles throughout the test. Condition one: The flexion/extension was 30° and 15° respectively. The internal/external rotation was ±10°. The force was Paul type stance phase loading with a maximum load of 3 kN and a standard ISO swing phase load of 0.3 kN. Condition two: The flexion/extension was ±22°. The internal/external rotation was ±8°. The force was a maximum stance phase load of 2.2 kN and a swing phase load of 0.24 kN at 0.5 Hz frequency. Wear was assessed gravimetrically.

Result: The masking effect of 1 Hz speed and uninter-rupted motion, in providing exaggerated lubrication regime, was exposed under more physiologically relevant test conditions. The AC devices have significantly reduced wear when compared to the DHT devices. It can also be seen that from 0.5 to 2 Mc the divergence in wear has increased.

Conclusion: A more physiologically relevant hip simulator test protocol was successfully developed and implemented, in showing the effect of microstructure on wear as seen in vivo, where high wear of DHT devices has been observed. 295


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 5 | Pages 717 - 725
1 May 2010
Kamali A Hussain A Li C Pamu J Daniel J Ziaee H Daniel J McMinn DJW

Hip simulators have been used for ten years to determine the tribological performance of large-head metal-on-metal devices using traditional test conditions. However, the hip simulator protocols were originally developed to test metal-on-polyethylene devices. We have used patient activity data to develop a more physiologically relevant test protocol for metal-on-metal devices. This includes stop/start motion, a more appropriate walking frequency, and alternating kinetic and kinematic profiles.

There has been considerable discussion about the effect of heat treatments on the wear of metal-on-metal cobalt chromium molybdenum (CoCrMo) devices. Clinical studies have shown a higher rate of wear, levels of metal ions and rates of failure for the heat-treated metal compared to the as-cast metal CoCrMo devices. However, hip simulator studies in vitro under traditional testing conditions have thus far not been able to demonstrate a difference between the wear performance of these implants.

Using a physiologically relevant test protocol, we have shown that heat treatment of metal-on-metal CoCrMo devices adversely affects their wear performance and generates significantly higher wear rates and levels of metal ions than in as-cast metal implants.