header advert
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_8 | Pages 9 - 9
10 May 2024
Owen D
Full Access

Background

Increasing evidence suggests a link between the bearing surface used in total hip arthroplasty (THA) and the occurrence of infection. It is postulated that polyethylene has immunomodulatory effects and may influence bacterial function and survival, thereby impacting the development of periprosthetic joint infection (PJI). This study aimed to investigate the association between polyethylene type and revision surgery for PJI in THA using data from the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR). We hypothesized that the use of XLPE would demonstrate a statistically significant reduction in revision rates due to PJI compared to N-XLPE.

Methods

Data from the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) spanning September 1, 1999, to December 31, 2021, were used to compare the infection revision rates between THA using N-XLPE and XLPE. We calculated the Cumulative Percentage Revision rate (CPR) and Hazard Ratio (HR) while controlling for factors like age, sex, body mass index (BMI), American Society of Anesthesiologists’ (ASA) grade, and head size.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 26 - 26
1 Oct 2022
Bell J Owen D Meek K Terrill N Sanchez-Weatherby J Le Maitre C
Full Access

Background

An improved understanding of intervertebral disc (IVD) structure and function is required for treatment development. Loading induces micro-fractures at the interface between the nucleus pulposus (NP) and the annulus fibrosus (AF), which is hypothesized to induce a cascade of cellular changes leading to degeneration. However, there is limited understanding of the structural relationship between the NP and AF at this interface and particularly response to load. Here, X-ray scattering is utilised to provide hierarchical morphometric information of collagen structure across the IVD, especially the interface region under load.

Methodology

IVDs were imaged using the I22 SAXS/WAXS beamline at Diamond Light Source. Peaks associated with the D-banded structure of collagen fibrils were fitted to quantify their azimuthal distribution, as well the magnitude and direction of internal strains under static and applied strain (0–20%).


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 22 - 22
1 Oct 2022
Owen D Snuggs J Michael A Cole A Chiverton N Breakwell L Sammon C Le Maitre C
Full Access

Background

Current clinical treatment for spinal instability requires invasive spinal fusion with cages and screw instrumentation. We previously reported a novel injectable hydrogel (Bgel), which supports the delivery and differentiation of mesenchymal stem cells (MSCs) to bone forming cells and supports bone formation in vivo. Here, we investigated whether this system could be utilised to induce bone formation within intervertebral disc tissue as a potential injectable spinal fusion approach.

Methodology

Bovine and Human Nucleus pulpous tissue explants were injected with Bgel with and without MSCs. Tissue samples were cultured under hypoxia (5%) in standard culture media for 4 weeks. Cell viability, histological assessment of matrix deposition, calcium formation, and cell phenotype analysis using immunohistochemistry for NP matrix and bone markers.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 8 - 8
1 Oct 2019
Owen D Snuggs J Partridge S Sammon C Le Maitre C
Full Access

Introduction

We have developed a new synthetic hydrogel that can be injected directly into the intervertebral disc (IVD) without major surgery. Designed to improve fixation of joint prosthesis, support bone healing or improve spinal fusion, the liquid may support the differentiation of native IVD cells towards osteoblast-like cells cultured within the hydrogel. Here we investigate the potential of this gel system (Bgel) to induce bone formation within intervertebral disc tissue.

Methods

IVD tissue obtained from patients undergoing discectomy, or cadaveric samples, were cultured within a novel explant device. The hydrogel was injected, with and without mesenchymal stem cells (MSCs), and cultured under hypoxia, to mimic the degenerate IVD environment, for 4 weeks. Explants were embedded to wax and native cellular migration into the hydrogel was investigated, together with cellular phenotype and matrix deposition.