Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 194 - 194
1 Jul 2014
Poldervaart M Gremmels H van Deventer K Fledderus J Oner FC Verhaar M Dhert W Alblas J
Full Access

Summary Statement

Prolonged presence of VEGF (released from gelatin microspheres) led to a significant increase in scaffold vascularization when applied in vivo. Bioprinted scaffolds with regional VEGF presence retained their architecture and regional vessel formation occurred.

Introduction

Tissue-engineered bone constructs need timely vascularization for optimal performance in regeneration. A potent stimulus of vascularization is vascular endothelial growth factor (VEGF), a factor with a short half-life time. Controlled release of VEGF from gelatin microparticles (GMPs) was investigated as a means to prolong VEGF presence at the preferred location within bioprinted scaffolds, and study subsequent vascularization.


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 3 | Pages 520 - 526
1 May 1998
Quist JJ Dhert WJA Meij BP Visser WJ Oner FC Hazewinkel HAW Verbout AJ

We studied peridural fibrosis in 16 dogs after laminectomies at the L2, L4 and L6 levels. They received either a free fat graft, a biodegradable mechanical barrier (polyethylene oxide (PEO)/polybutylene terephthalate (PBT) copolymer), or no treatment. The animals were killed after 4, 12, 26 and 52 weeks.

Histomorphometry showed extensive and consistent peridural fibrosis in control and PEO/PBT groups. Fat grafts produced significantly less fibrous tissue, but the presence of the fat graft in the bony defect prevented closure. Degradation of the PEO/PBT barrier resulted in the formation of more fibrous tissue.

We conclude that up to one year a free fat graft is effective in reducing the amount of peridural scarring.