Peri-prosthetic osteolysis and subsequent aseptic
loosening is the most common reason for revising total hip replacements.
Wear particles originating from the prosthetic components interact
with multiple cell types in the peri-prosthetic region resulting
in an inflammatory process that ultimately leads to peri-prosthetic
bone loss. These cells include macrophages, osteoclasts, osteoblasts
and fibroblasts. The majority of research in peri-prosthetic osteolysis
has concentrated on the role played by osteoclasts and macrophages.
The purpose of this review is to assess the role of the osteoblast
in peri-prosthetic osteolysis. In peri-prosthetic osteolysis, wear particles may affect osteoblasts
and contribute to the osteolytic process by two mechanisms. First,
particles and metallic ions have been shown to inhibit the osteoblast
in terms of its ability to secrete mineralised bone matrix, by reducing
calcium deposition, alkaline phosphatase activity and its ability
to proliferate. Secondly, particles and metallic ions have been
shown to stimulate osteoblasts to produce pro inflammatory mediators Cite this article:
We developed a method of applying vibration to the impaction bone grafting process and assessed its effect on the mechanical properties of the impacted graft. Washed morsellised bovine femoral heads were impacted into shear test rings. A range of frequencies of vibration was tested, as measured using an accelerometer housed in a vibration chamber. Each shear test was repeated at four different normal loads to generate stress-strain curves. The Mohr-Coulomb failure envelope from which shear strength and interlocking values are derived was plotted for each test. The experiments were repeated with the addition of blood in order to replicate a saturated environment. Graft impacted with the addition of vibration at all frequencies showed improved shear strength when compared with impaction without vibration, with 60 Hz giving the largest effect. Under saturated conditions the addition of vibration was detrimental to the shear strength of the aggregate. The civil-engineering principles of particulate settlement and interlocking also apply to impaction bone grafting. Although previous studies have shown that vibration may be beneficial in impaction bone grafting on the femoral side, our study suggests that the same is not true in acetabular revision.
Orthopaedic surgery is in an exciting transitional period as modern surgical interventions, implants and scientific developments are providing new therapeutic options. As advances in basic science and technology improve our understanding of the pathology and repair of musculoskeletal tissue, traditional operations may be replaced by newer, less invasive procedures which are more appropriately targeted at the underlying pathophysiology. However, evidence-based practice will remain a basic requirement of care. Orthopaedic surgeons can and should remain at the forefront of the development of novel therapeutic interventions and their application. Progression of the potential of bench research into an improved array of orthopaedic treatments in an effective yet safe manner will require the development of a subgroup of specialists with extended training in research to play an important role in bridging the gap between laboratory science and clinical practice. International regulations regarding the introduction of new biological treatments will place an additional burden on the mechanisms of this translational process, and orthopaedic surgeons who are trained in science, surgery and the regulatory environment will be essential. Training and supporting individuals with these skills requires special consideration and discussion by the orthopaedic community. In this paper we review some traditional approaches to the integration of orthopaedic science and surgery, the therapeutic potential of current regenerative biomedical science for cartilage repair and ways in which we may develop surgeons with the skills required to translate scientific discovery into effective and properly assessed orthopaedic treatments.
Quadriceps femoris muscle (QFM) weakness is associated with the development of knee osteoarthritis (OA). Neuromusclar electrical stimulation (NMES) circumvents neural inhibition causing muscle contraction, however there is little reported data demonstrating its role in knee OA. Our aim was to evaluate the effectiveness of a NMES program in patients with knee OA. Sixteen patients (10 women, 6 men) with severe knee OA were randomised into control (n=6) or intervention (n=10) groups. These were similar in terms of age (64.8 ± 11.0 vs. 64.6 ± 7.6; mean ± SD) and BMI (31.8 ± 6.11 vs.30.7 ± 2.9). NMES was applied using a garment-based stimulator for 20 min/day, 5 d/wk for 8 weeks. Isokinetic and isometric QFM strength were determined at baseline, and weeks 2, 5, and 8 using a dynomometer. Functional assessments involved a 25 metre timed walk test (TWT), timed stair-climb test (SCT), and timed chair-rise test (CRT) at baseline and week 8. Subjects recorded NMES session duration in a log book while the device also recorded total treatment time. Function significantly improved in the NMES group as determined by the timed SCT (p<
0.01) and the timed CRT (p<
0.01) at week 8 compared to week 0. Isometric QFM strength was significantly higher in the NMES group at weeks 2, 5 and 8 than week 0. Compared to week 0, isokinetic hamstring strength increased significantly in the NMES group at week 2, week 5 and week 8 while isokinetic QFM strength increased at week 5 (p<
0.05) and week 8 (p<
0.01). Patient recorded compliance was 99.5% (range, 97.1%–100%) and overall usage recorded on the stimulator was 96.1% ± 13.2. The use of a portable home-based NMES program produced significant QFM strength gain with associated improvement in function in patients with severe knee OA. Compliance was excellent overall.
Our aims were to map the tibial footprint of the posterior cruciate ligament (PCL) using MRI in patients undergoing PCL-preserving total knee replacement, and to document the disruption of this footprint as a result of the tibial cut. In 26 consecutive patients plain radiography and MRI of the knee were performed pre-operatively, and plain radiography post-operatively. The lower margin of the PCL footprint was located a mean of 1 mm (−10 to 8) above the upper aspect of the fibular head. The mean surface area was 83 mm2 (49 to 142). One-third of patients (8 of 22) had tibial cuts made below the lowest aspect of the PCL footprint (complete removal) and one-third (9 of 22) had cuts extending into the footprint (partial removal). The remaining patients (5 of 22) had footprints unaffected by the cuts, keeping them intact. Our study highlights the wide variation in the location of the tibial PCL footprint when referenced against the fibula. Proximal tibial cuts using conventional jigs resulted in the removal of a significant portion, if not all of the PCL footprint in most of the patients in our study. Our findings suggest that when performing PCL-retaining total knee replacement the tibial attachment of the PCL is often removed.
This study assessed the frequency of acute injury to the spinal cord in Irish Rugby over a period of ten years, between 1995 and 2004. There were 12 such injuries; 11 were cervical and one was thoracic. Ten occurred in adults and two in schoolboys. All were males playing Rugby Union and the mean age at injury was 21.6 years (16 to 36). The most common mechanism of injury was hyperflexion of the cervical spine and the players injured most frequently were playing at full back, hooker or on the wing. Most injuries were sustained during the tackle phase of play. Six players felt their injury was preventable. Eight are permanently disabled as a result of their injury.
Injuries to the spinal cord may be associated with increased healing of fractures. This can be of benefit, but excessive bone growth can also cause considerable adverse effects. We evaluated two groups of patients with fractures of the spinal column, those with neurological compromise (n = 10) and those without (n = 15), and also a control group with an isolated fracture of a long bone (n = 12). The level of transforming growth factor-beta (TGF-β), was measured at five time points after injury (days 1, 5, 10, 42 and 84). The peak level of 142.79 ng/ml was found at day 84 in the neurology group (p <
0.001 Our findings suggest that TGF-β may have a role in the increased bone turnover and attendant complications seen in patients with acute injuries to the spinal cord.
Patients with spinal cord injuries have been seen to have increased healing of attendant fractures. This for the main has been a clinical observation with laboratory work confined to rats. While the benefits in relation to quicker fracture healing are obvious, this excessive bone growth (heterotopic ossification) also causes unwanted side effects, such as decreased movement around joints, joint fusion and renal tract calculi. However, the cause for this phenomenon remains unclear. This paper evaluates two groups with spinal column fractures – those with neurological compromise (n=10) and those without (n=11), and compares them with a control group with isolated long bone fractures (n=10). Serum was taken from these patients at five specific time intervals post injury (1 day, 5 days, 10 days, 42 days (6 weeks) and 84 days (12 weeks)). These samples were then analysed for levels of Transforming Growth Factor-Beta (TGF-ß) using the ELISA technique. This cytokine has been shown to stimulate bone formation after both topical and systemic administration. Results show TGF-ß levels of 142.79+/−29.51 ng/ml in the neurology group at 84 days post injury. This is higher than any of the other time points within this group (p<
0.001 vs day 1, day 5 and day 10 and p=0.005 vs 42 days, ANOVA univariate analysis). Furthermore, this level is also higher than the levels recorded in the non neurology (103.51+/−36.81 ng/ml) and long bone (102.28=/−47.58 ng/ml) groups at 84 days post injury (p=0.011 and p=0.021 respectively, ANOVA univariate analysis). There was statistically significant difference in TGF-ß levels seen between the clinically more severely injured patients, ie complete neurological deficit and the less severely injured patients, ie incomplete neurological deficit. In conclusion, the results of this work, carried out for the first time in humans, offers strong evidence of the causative role of TGF-ß in the increased bone turnover and attendant complications seen in patients with acute spinal cord injuries.
This basic science study attempts to explain why patients with spinal cord injuries have been seen to display increased healing of attendant fractures. For the main part, this has been a clinical observation with laboratory work confined to rats. While the benefits in relation to quicker fracture healing are obvious, this excessive bone growth (heterotopic ossification) also causes unwanted side effects, such as decreased movement around joints, joint fusion and renal tract calculi. However, the cause for this phenomenon remains unclear. This paper evaluates two group with spinal column fractures – those with neurological compromise (n=10) and those without (n=11), and compares them with a control group with isolated long bone fractures (n=10). Serum was taken from these patients at five specific time intervals post injury (24hrs, 120hrs, 10 days, 6 weeks and 12 weeks). The time period most closely related to the end of the acute inflammatory reaction and the laying down of callus was the 10-day post injury time period. Serum samples taken at this time period were analysed for IGF-1 and TGF-ß levels, both known to initiate osteoblastic activity, using ELISA kits. They were also exposed to an osteoblast cell culture line and cell proliferation was measured. Results show that the group with neurology has increased levels of IGF-1 compared to the other groups (p<
0.14, p<
0.18 respectively, Student’s t-test) but had lower TGF-ß (p<
0.05, p<
0.006) and osteoblast proliferation levels (p<
0.002, p<
0.0001). When the neurology group is subdivided into complete (n=5) and incomplete (n=5), it was shown that the complete group had higher levels of both IGF-1 and TGF-ß. This trend is reversed in the osteoblast proliferation assay. This work, for the first time in human subjects, identifies a factor which may be regulating this complication of acute spinal cord injuries, namely IGF-1. Furthermore, the observed trend in the two cytokines seen in the complete neurology group may suggest a role for TGF-ß. However, the results do show that a direct mediation of this unwanted side effect of spinal cord injuries is unlikely as seen in the proliferation assay. Further work remains to be done to fully understand the complexities of the excessive bone growth recognised in this patient group.
Patients with spinal cord injuries have been seen to have increased healing of attendant fractures. This for the main has been a clinical observation with laboratory work confined to rats. While the benefits in relation to quicker fracture healing are obvious, this excessive bone growth (heterotopic ossification) also causes unwanted side effects, such as decreased movement around joints, joint fusion and renal tract calculi. However, the cause for this phenomenon remains unclear. This paper evaluates two groups with spinal column fractures – those with neurological compromise (n=10) and those without (n=11), and compares them with a control group with isolated long bone fractures (n=10). Serum was taken from these patients at five specific time intervals post injury (24hrs, 120hrs, 10 days, 6 weeks and 12 weeks). The time period most closely related to the end of the acute inflammatory reaction and the laying down of callus was the 10-day post injury time period. Serum samples taken at this time period were analysed for IGF-1 and TGF-β levels, both known to initiate osteoblastic activity, using ELISA kits. They were also exposed to an osteoblast cell culture line and cell proliferation was measured. Results show that the group with neurology has increased levels of IGF-1 compared to the other groups (p<
0.14, p<
0.18 respectively, Student’s t-test) but had lower TGF- (p<
0.05, p<
0.006) and osteoblast proliferation levels (p<
0.002, p<
0.001), despite having a significantly higher cell proliferation than a control group (p<
0.0001). When the neurology group is subdivided into complete (n=5) and incomplete (n=5), it was shown that the complete group had higher levels of both IGF-1 and TGF-. This trend is reversed in the osteoblast proliferation assay. This work, for the first time in human subjects, identifies a factor which may be regulating this complication of acute spinal cord injuries, namely IGF-1. Furthermore, the observed trend in the two cytokines seen in the complete neurology group may suggest a role for TGF-β. However, the results do show that a direct mediation of this unwanted side effect of spinal cord injuries is unlikely as seen in the proliferation assay. Further work remains to be done to fully understand the complexities of the excessive bone growth recognised in this patient group.
We studied prospectively 81 consecutive patients undergoing hip surgery using the Hardinge (1982) approach. The abductor muscles of the hip in these patients were assessed electrophysiologically and clinically by the modified Trendelenburg test. Power was measured using a force plate. We performed assessment at two weeks, and at three and nine months after operation. At two weeks we found that 19 patients (23%) showed evidence of damage to the superior gluteal nerve. By three months, five of these had recovered. The nine patients with complete denervation at three months showed no signs of recovery when reassessed at nine months. Persistent damage to the nerve was associated with a positive Trendelenburg test.