Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

CYTOKINE AND OSTEOBLAST MEDIATED INCREASES IN HEALING OF ATTENDANT FRACTURES SEEN IN PATIENTS WITH ACUTE SPINAL CORD INJURIES



Abstract

This basic science study attempts to explain why patients with spinal cord injuries have been seen to display increased healing of attendant fractures.

For the main part, this has been a clinical observation with laboratory work confined to rats. While the benefits in relation to quicker fracture healing are obvious, this excessive bone growth (heterotopic ossification) also causes unwanted side effects, such as decreased movement around joints, joint fusion and renal tract calculi. However, the cause for this phenomenon remains unclear.

This paper evaluates two group with spinal column fractures – those with neurological compromise (n=10) and those without (n=11), and compares them with a control group with isolated long bone fractures (n=10). Serum was taken from these patients at five specific time intervals post injury (24hrs, 120hrs, 10 days, 6 weeks and 12 weeks). The time period most closely related to the end of the acute inflammatory reaction and the laying down of callus was the 10-day post injury time period.

Serum samples taken at this time period were analysed for IGF-1 and TGF-ß levels, both known to initiate osteoblastic activity, using ELISA kits. They were also exposed to an osteoblast cell culture line and cell proliferation was measured.

Results show that the group with neurology has increased levels of IGF-1 compared to the other groups (p< 0.14, p< 0.18 respectively, Student’s t-test) but had lower TGF-ß (p< 0.05, p< 0.006) and osteoblast proliferation levels (p< 0.002, p< 0.0001). When the neurology group is subdivided into complete (n=5) and incomplete (n=5), it was shown that the complete group had higher levels of both IGF-1 and TGF-ß. This trend is reversed in the osteoblast proliferation assay.

This work, for the first time in human subjects, identifies a factor which may be regulating this complication of acute spinal cord injuries, namely IGF-1. Furthermore, the observed trend in the two cytokines seen in the complete neurology group may suggest a role for TGF-ß. However, the results do show that a direct mediation of this unwanted side effect of spinal cord injuries is unlikely as seen in the proliferation assay. Further work remains to be done to fully understand the complexities of the excessive bone growth recognised in this patient group.

The abstracts were prepared by Mr Ray Moran. Correspondence should be addressed to him at Irish Orthopaedic Associaton, Secretariat, c/o Cappagh National Orthopaedic Hospital, Finglas, Dublin 11.