TRPA1 antagonist reduced spontaneous excitatory postsynaptic currents of substantia gelatinosa neuron in spinal cord dorsal horn by in vivo patch-clamp analysis. TRPA1 may act as a mediator of excitatory synaptic transmission. Little is known about the pathophysiological mechanisms of radicular pain. The substantia gelatinosa (SG) in the spinal cord dorsal horn receives primary afferent inputs, which predominantly convey nociceptive sensations. Nociceptive information is modified and integrated in the SG, suggesting that the SG may be a therapeutic target for treating radicular pain. Electrophysiological study using Summary Statement
Introduction
In order to elucidate the influence of sympathetic nerves on
lumbar radiculopathy, we investigated whether sympathectomy attenuated
pain behaviour and altered the electrical properties of the dorsal
root ganglion (DRG) neurons in a rat model of lumbar root constriction. Sprague-Dawley rats were divided into three experimental groups.
In the root constriction group, the left L5 spinal nerve root was
ligated proximal to the DRG as a lumbar radiculopathy model. In
the root constriction + sympathectomy group, sympathectomy was performed
after the root constriction procedure. In the control group, no
procedures were performed. In order to evaluate the pain relief
effect of sympathectomy, behavioural analysis using mechanical and
thermal stimulation was performed. In order to evaluate the excitability
of the DRG neurons, we recorded action potentials of the isolated
single DRG neuron by the whole-cell patch-clamp method.Objectives
Methods