Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 65 - 65
1 Oct 2012
Haselbacher M Sekyra K Mayr E Thaler M Nogler M
Full Access

In the last years custom-fit cutting guides using magnetic resonance imaging (MRI) were introduced by orthopedic surgeons for total knee arthroplasty (TKA). One of the advantages of these shape-fitting jigs is the possibility to transfer the preoperative planning of the TKA directly to the individual patient's bone. However, one has to be aware, that the jigs are designed for single-use and have to be custom made by an external manufacturer. This increases the cost of implantation and unlinks the surgeon from this process. In addition a potentially necessary adjustment of the preoperatively planned implant size and position in a surgical situation is not possible.

The purpose of our development was to combine the advantages of custom-fit cutting guides as a 3-D-computer-assisted planning tool with the option to adjust and improve the preoperative planning and the jig in the actual surgical situation. In addition no outside jig manufacturing would occur in this concept. This leaves the surgeon in control of the entire process.

The purpose of this study was to examine the reliability of this screw-based shape – fitting system. In order to do this we assessed the inter- and intra-observer reliability of the recurrent placement of the plate on a set of bone samples with preset screws.

We developed a plate with the dimension of 66 × 76 × 10 mm, containing 443 threaded holes. A connector for further instrumentation is mounted on the proximal part of the plate,. As the plate and the screws are made of aluminum and steel, sterilization is possible.

After computer tomography (CT) scans were taken from three human femoral bones, eight to nine variably positioned screws (50.45 mm length, 2.75 mm diameter), reversibly fixed by locknuts, formed an imprint of a bone's surface. For calculating precise screw positions, a computer-based planning software was developed resulting in a three-dimensional reconstruction of the bony surfaces. The plate was integrated in the 3-D reconstruction software. With a defined distance to the distal part of the femurs, allowed the proper length and position of the screws to be calculated. These calculations were transferred to the screws on the real plate.

In the next step the plate was positioned on the bony surface and after reaching the planned position the plate's connector was rigidly fixed to the bone. The plate was removed to give place to link saw jigs to the connector.

Planning and setting of the plate and the screws were conducted on three femoral bones.

Examinations were performed by five investigators with ten repetitions on each bone with three distinct plates. Intra- and inter-observer variability was assessed by measuring the variation in plate position between the trials.

The jigs were placed in a mean frontal tilting (medial to lateral) of 0.83°. The mean axial tilting (proximal to distal) was 1.66° and the mean shift on the axis from proximal to distal 8.48 mm. The shift and the tilting were significantly bone dependent but not user dependent. Compared with previous studies the deviation from the mechanical axis were comparable with conventional TKA (2.6° and 0.4°), computer assisted TKA (1.4° and 1.9°) and Custom-fit TKA (1.2°).

We developed a preoperative planning system for TKA that allows a transfer of the planning and the calculated imprint of the bones surface on a grid-plate during surgery by the surgeons themselves. Neither external manufacturers to create a fixed device nor a navigation system is necessary. Results showed the functioning of the screw – based shape fitting technique within the accuracy mentioned above. These findings are encouraging to do further research to examine the ideal number of screws to offer a perfect fitting.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 46 - 46
1 Sep 2012
Hozack W Nogler M Callopy D Mayr E Deirmengian G Sekyra K
Full Access

INTRODUCTION

While standard instrumentation tries to reproduce mechanical axes based on mechanical alignment guides, a new “shape matching” system derives its plan from kinematic measurements using pre-operative MRIs. The current study aimed to compare the resultant alignment in a matched pair cadaveric study between the Shape Match and a standard mechanical system.

METHODS

A prospective series of Twelve (12) eviscerated torso's were acquired for a total of twenty four (24) limb specimens that included intact pelvises, femoral heads, knees, and ankles. The cadavers received MRI-scans, which were used to manufacture the Shape Match cutting guides. Additionally all specimen received “pre-operative” CT-scans to determine leg axes. Two (2) investigating surgeons performed total knee arthroplasties on randomly chosen sides by following the surgical technique using conventional instruments. On the contralateral sides, implantation of the same prosthesis was done using the Kinematic Shape Match Cutting Guides. A navigation system was used to check for leg alignement. Implant alignement was determined using post-operative CT-scans. For statistical analysis SPSS was used.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 150 - 150
1 Sep 2012
Putzer D Nogler M Mayr E Haid C Hozack W
Full Access

In minimally invasive direct anterior total hip arthroplasty double offset broach handles are used, in order to facilitate the preparation of the femoral canal. The maximum value of the main force peak and the impulse of two types of double offset broach handles (A European version, B American version) were compared to a single offset broach handle (S). Results have demonstrated that the highest values of the main force peak and force impulse were found in the single offset broach handle. Broach handle A had higher impulse values and lower maximum force values compared to broach handle B. In double offset broach handles less energy is transmitted to the tip. Broach handle A has a lower force peak than B and therefore a reduced risk of bone fracture.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 149 - 149
1 Sep 2012
Putzer D Mayr E Haid C Reinthaler A Nogler M
Full Access

In Total Hip Arthroplasty (THA) bone loss is recovered by using compacted porous bone chips. The technique requires the morsellised allograft to be adequately compacted to provide initial stability for the prosthesis in order to prevent early massive subsidence and to induce bone remodeling. Therefore the bone grafts provide initial stability and an environment in which revascularization and incorporation of the graft into the host skeleton may occur. Acetabular reconstruction with impacted morsellised cancellous grafts and cement leads to satisfactory long-term results. In the acetabular impact-grafting procedure, a hammer and an impaction stick is used for manual compaction. Another technique uses a hammer driven by compressed air, which could lead to higher density and improved stability of bone chips in the acetabulum. The aim of this study was to compare two different compaction modes for bone impaction grafting for the acetabulum. The hypothesis was that a pneumatic impaction method would produce less variable results than the manual impaction mode and lead to better compaction results of the bone chips in less time.

Bone mass characteristics were measured by force and distance variation of a penetrating punch, which was lowered into a plastic cup filled with bone chips. For each compaction method and for each time interval (0, 3, 6, 9, 12, 15 and 30 [s] of compaction time) 30 measurements of force and distance variations were taken. From the measurements of force and distance variations bulk density, contact stiffness, impaction hardness and penetration resistance were calculated before and after the established time intervals of compaction. Since not all data was normally distributed the non-parametric U-Test was used for comparison of the two impaction methods. Particle size distribution was determined using sieve analysis according to Din 18123 standard after the compaction experiments.

Results have shown that the pneumatic method leads to higher values in impaction hardness, contact stiffness and bulk density and is more suitable to increase the primary stability of the implant. The differences in bulk density, impaction hardness and contact stiffness where statistically significant (p<0.01). No significant differences were found between the two different methods concerning the penetration resistance. The coefficient of uniformity Cu, calculated from the particle size distribution determined by the sieve analysis, has a value of 3.8.

The particle size distribution is comparable to the results published in literature. Pneumatic impaction achieves higher density values in less time with less force applied and results in more reproducible outcomes when used. It reduces therefore the risk of bone fracture, as smaller peak forces are used for less time. However for optimal osteointegration it is not recommended to achieve maximum density. Further clinical studies should determine a reference value for optimal growth-in of osteocytes. Manual impaction shows more variable results and depends much on the experience of the surgeon. The pneumatic hammer is therefore a suitable tool to standardize the impaction process for acetabular bone defects.