Advertisement for orthosearch.org.uk
Results 1 - 20 of 26
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 26 - 26
1 Oct 2022
Bell J Owen D Meek K Terrill N Sanchez-Weatherby J Le Maitre C
Full Access

Background

An improved understanding of intervertebral disc (IVD) structure and function is required for treatment development. Loading induces micro-fractures at the interface between the nucleus pulposus (NP) and the annulus fibrosus (AF), which is hypothesized to induce a cascade of cellular changes leading to degeneration. However, there is limited understanding of the structural relationship between the NP and AF at this interface and particularly response to load. Here, X-ray scattering is utilised to provide hierarchical morphometric information of collagen structure across the IVD, especially the interface region under load.

Methodology

IVDs were imaged using the I22 SAXS/WAXS beamline at Diamond Light Source. Peaks associated with the D-banded structure of collagen fibrils were fitted to quantify their azimuthal distribution, as well the magnitude and direction of internal strains under static and applied strain (0–20%).


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 18 - 18
1 Oct 2022
Basatvat S Braun T Snuggs J Williams R Templin M Tryfonidou M Le Maitre C
Full Access

Backgrounds and aim

Low back pain resulting from Intervertebral disc (IVD) degeneration is a serious worldwide problem, with poor treatment options available. Notochordal (NC) cells, are a promising therapeutic cell source with anti-catabolic and regenerative effect, however, their behaviour in the harsh degenerate environment is unknown. Thus, we aimed to investigate and compare their physiological behaviour in in vitro niche that mimics the healthy and degenerated intervertebral disc environment.

Methodology

Porcine NC cells were encapsulated in 3D alginate beads to maintain their phenotype then cultured in media to mimic the healthy and degenerate disc environment, together with control NC media for 1 week. Following which viability using PI and Calcein AM, RNA extraction and RT-PCR for NC cell markers, anabolic and catabolic genes analysed. Proteomic analysis was also performed using Digiwest technology.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 1 - 1
1 Oct 2022
Paskins Z Le Maitre C Farmer C Clark E Mason D Wilkinson C Andersson D Bishop F Brown C Clark A Jones R Loughlin J McCarron M Pandit H Richardson S Salt E Taylor E Troeberg L Wilcox R Barlow T Peat G Watt F
Full Access

Background

Involving research users in setting priorities for research is essential to ensure research outcomes are patient-centred and to maximise research value and impact. The Musculoskeletal (MSK) Disorders Research Advisory Group Versus Arthritis led a research priority setting exercise across MSK disorders.

Methods

The Child Health and Nutrition Research Initiative (CHRNI) method of setting research priorities with a range of stakeholders were utilised. The MSKD RAG identified, through consensus, four research Domains: Mechanisms of Disease; Diagnosis and Impact; Living Well with MSK disorders and Successful Translation. Following ethical approval, the research priority exercise involved four stages and two surveys, to: 1) gather research uncertainties; 2) consolidate these; 3) score uncertainties using agreed criteria of importance and impact on a score of 1–10; and 4) analyse scoring, for prioritisation.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 16 - 16
1 Oct 2022
Nüesch A Alexopoulos L Kanelis E Williams F Geris L Gantenbein B Lacey M Le Maitre C
Full Access

Objectives

This study aims to investigate whether bacteria are present in intervertebral discs (IVDs) and their influence. Causality between chronic infection of the IVD and its degenerative process gained great interest recently. Granville Smith et al. (2021) identified 36 articles from 34 research studies investigating bacteria in IVDs, from these 27 studies found, Cutibacterium acnes being the most abundant. However, whether bacteria identified were present in vivo or if they represent contamination remains unclear.

Methods

Human IVD tissue was fixed in paraffin and Immunohistochemical stained for Gram-positive bacteria. NP cells in monolayer have been stimulated with LPS (0.1–50 µg/ml) and Peptidoglycan (0.1–50 µg/ml) for 24, 48 and 72 hrs to investigate their influence. The concentration of proinflammatory and catabolic cytokines in the media is being measured using ELISA. RNA extracted and RT-qPCR utilised for factors associated with disc degeneration matrix genes, matrix degrading enzymes, cytokines, neurotrophic factors and angiogenic factors.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 5 - 5
1 Oct 2022
Williams R Snuggs J Schmitz TC Janani R Basatvat S Sammon C Benz K Ito K Tryfonidou M Le Maitre C
Full Access

Objectives

Low back pain is strongly associated with degeneration of the intervertebral disc (IVD). During degeneration, altered matrix synthesis and increased matrix degradation, together with accompanied cell loss is seen particularly in the nucleus pulposus (NP). It has been proposed that notochordal (NC) cells, embryonic precursors for the cells within the NP, could be utilized for mediating IVD regeneration. However, injectable biomaterials are likely to be required to support their phenotype and viability within the degenerate IVD. Therefore, viability and phenotype of NC cells were analysed and compared within biomaterial carriers subjected to physiological oxygen conditions over a four-week period were investigated.

Methodology

Porcine NC cells were incorporated into three injectable hydrogels: NPgel (a L-pNIPAM-co-DMAc hydrogel), NPgel with decellularized NC-matrix powder (dNCM) and Albugel (an albumin/ hyaluronan hydrogel). The NCs and biomaterials constructs were cultured for up to four weeks under 5% oxygen (n=3 biological repeats). Histological, immunohistochemical and glycosaminoglycans (GAG) analysis were performed to investigate NC viability, phenotype and extracellular matrix synthesis and deposition.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 22 - 22
1 Oct 2022
Owen D Snuggs J Michael A Cole A Chiverton N Breakwell L Sammon C Le Maitre C
Full Access

Background

Current clinical treatment for spinal instability requires invasive spinal fusion with cages and screw instrumentation. We previously reported a novel injectable hydrogel (Bgel), which supports the delivery and differentiation of mesenchymal stem cells (MSCs) to bone forming cells and supports bone formation in vivo. Here, we investigated whether this system could be utilised to induce bone formation within intervertebral disc tissue as a potential injectable spinal fusion approach.

Methodology

Bovine and Human Nucleus pulpous tissue explants were injected with Bgel with and without MSCs. Tissue samples were cultured under hypoxia (5%) in standard culture media for 4 weeks. Cell viability, histological assessment of matrix deposition, calcium formation, and cell phenotype analysis using immunohistochemistry for NP matrix and bone markers.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 2 - 2
1 Oct 2022
Cherif H Li L Snuggs J Sammon C Beckman L Haglund L Le Maitre C
Full Access

Background

We have previously reported an injectable hydrogel (NPgel), which could deliver patients own stem cells, via small bore needles, decreasing damage to the annulus fibrosus. NPgel drives differentiation to NP cells and can inhibit the degenerate niche. However, clinical success of NPgel is dependent on the capacity to inject NPgel into naturally degenerate human discs, restore mechanical function to the IVD, prevent extrusion during loading and induce regeneration. This study assessed injectability of NPgel into human IVD, influence on mechanical properties, regeneration ability in an ex vivo culture system and retention under failure testing.

Methodology

Cadaveric human discs were used to calculate disc height and to determine Youngs Modulus during simulated walking pre and post injection of NPgel, extrusion testing performed. Whole human IVDs were injected with NPgel +/− human BMPCs and maintained in culture under physiological loading regime for 4 weeks. Pre and post culture MRI imaging and in line biomechanical characteristics determined. Histology and immunochemistry performed for anabolic and catabolic factors.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 4 - 4
1 Oct 2019
Partridge S Snuggs J Thorpe A Cole A Chiverton N Le Maitre C Sammon C
Full Access

Introduction

Injectable hydrogels via minimally invasive surgery offer benefits to the healthcare system, reduced risk of infection, scar formation and the cost of treatment. Development of new treatments with the use of novel biomaterials requires significant pre-clinical testing and must comply with regulations before they can reach the bedside. In the European economic area (EEA) one of the first hurdles of this process is attaining the CE marking which protects the health, safety and environmental aspects of a product. Implanted materials fall under the class III medical device EU745 regulation standards. To attain the CE marking for a product parties must provide evidence of the materials safety with an investigational medicinal product dossier (IMPD).

Methods and Results

We have been working to develop a new thermoresponsive injectable biomaterial hydrogel (NPgel) for the treatment of intervertebral disc (IVD) disease. A large part of the IMPD requires information on how the hydrogel physical properties change over time in bodily conditions. We have been studying 6 batches of NPgel over 18 months, tracking the materials wet/ dry weight, structure and composition. To date we have found that NPgel in liquids more similar to the body (with protein and salts) appear to be stable and safe, whilst those in distilled water swell and disintegrate over time. Subtle long-term changes to the material composition were found and we are currently investigating its ramifications.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 8 - 8
1 Oct 2019
Owen D Snuggs J Partridge S Sammon C Le Maitre C
Full Access

Introduction

We have developed a new synthetic hydrogel that can be injected directly into the intervertebral disc (IVD) without major surgery. Designed to improve fixation of joint prosthesis, support bone healing or improve spinal fusion, the liquid may support the differentiation of native IVD cells towards osteoblast-like cells cultured within the hydrogel. Here we investigate the potential of this gel system (Bgel) to induce bone formation within intervertebral disc tissue.

Methods

IVD tissue obtained from patients undergoing discectomy, or cadaveric samples, were cultured within a novel explant device. The hydrogel was injected, with and without mesenchymal stem cells (MSCs), and cultured under hypoxia, to mimic the degenerate IVD environment, for 4 weeks. Explants were embedded to wax and native cellular migration into the hydrogel was investigated, together with cellular phenotype and matrix deposition.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 45 - 45
1 Oct 2019
Partridge S Snugg J Michael A Cole A Chiverton N Sammon C Maitre C
Full Access

Introduction

Low back pain is the leading cause of musculoskeletal disease and the biggest cause of morbidity worldwide. Approximately 40% of these are cases are caused by disease of the intervertebral discs (IVDs): the shock absorbing, flexible material located between the bones (vertebrae) along the length of the spine. In severe cases, the spine becomes unstable and it becomes necessary to immobilise or fix the joint in position using a lumbar cage spacer between in the IVD and metal pins with supporting plates in the vertebrae. This is a complex, expensive, major surgery and it is associated with complications, such as spinal fusion failure and inappropriate implant position. These complications have a dramatic impact on the quality of life of the affected patients and the burden to society and the healthcare system is exacerbated.

Methods and Results

We present an in vitro study looking at the effect of our Bgel hydrogel on mesenchymal stem cells (MSCs) and their bone forming capacity within lumbar cages: devices used to space the bones apart in the fusion operation, as a mechanism to improve fixation and intra cage bone formation. MSCs were isolated from human hip joint, expanded, seeded within Bgel, cast into well inserts or lumbar cages and cultured for 4 weeks. Using 3D X-ray imaging micro computed tomography (μCT) scans we show that the MSC in the presence Bgel begin to mineralise within the lumbar cages. Histology is currently ongoing and will be presented at the meeting.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 17 - 17
1 Oct 2019
Snuggs J Thorpe A Partridge S Chiverton N Cole A Michael A Sammon C Le Maitre C
Full Access

Purpose of study and background

We have previously reported the development of injectable hydrogels for potential disc regeneration (NPgel) or bone formation which could be utilized in spinal fusion (Bgel). As there are multiple sources of mesenchymal stem cells (MSCs), this study investigated the incorporation of patient matched hMSCs derived from adipose tissue (AD) and bone marrow (BM) to determine their ability to differentiate within both hydrogel systems under different culture conditions.

Methods and Results

Human fat pad and bone marrow derived MSCs were isolated from femoral heads of patients undergoing hip replacement surgery for osteoarthritis with informed consent. MSCs were encapsulated into either NPgel or Bgel and cultured for up to 6 weeks in 5% (NPgel) or 21% (Bgel) O2. Histology and immunohistochemistry was utilized to determine phenotype. Both fat and bone marrow derived MSCs, were able to differentiate into both cell lineages. NPgel culture conditions increased expression of matrix components such as collagen II and aggrecan and NP phenotypic markers FOXF1 and PAX1, whereas Bgel induced expression of collagen I and osteopontin, indicative of osteogenic differentiation.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 36 - 36
1 Oct 2019
Partridge S Maitre C Sammon C
Full Access

Introduction

Musculoskeletal diseases are the biggest cause of morbidity worldwide, with low back pain (LBP) being the leading cause. Forty percent of LBP cases are caused by disease of shock absorbers in the spine known as intervertebral discs (IVDs). The IVDs enable the spine to twist and bend, whilst absorbing load during normal daily activities. The durability of this tissue is sustained by the cells of the spine and so during disease or mechanical damage these cells can behave abnormally further damaging the disc and stimulating local nerves causing extreme pain. Degradation of the intervertebral disc (IVD) currently has no preventative treatment; an injectable hydrogel biomaterial could reinforce disc mechanical properties and promote tissue regeneration.

Methods and Results

We present an injectable range of hydrogel biomaterials made from water, clay and polymer that set at 37°C. The materials were made at 80°C polymerised in water and stored at 70°C to remain liquid. The physical properties of the materials were assessed using various methods, including mechanical assessment using temperature-controlled rheometry to monitor the liquid-hydrogel transition.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 30 - 30
1 Oct 2019
Snuggs J Rustenberg C Emanuel K Partridge S Sammon C Smit T Le Maitre C
Full Access

Purpose of study and background

Low back pain affects 80% of the population at some point in their lives with 40% of cases attributed to intervertebral disc (IVD) degeneration. A number of potential regenerative approaches are under investigation worldwide, however their translation to clinic is currently hampered by an appropriate model for testing prior to clinical trials. Therefore, a more representative large animal model for IVD degeneration is needed to mimic human degeneration. Here we investigate a caprine IVD degeneration model in a loaded disc culture system which can mimic the native loading environment of the disc.

Methods and Results

Goat discs were excised and cultured in a bioreactor under diurnal, simulated-physiological loading (SPL) conditions, following 3 days pre load, IVDs were degenerated enzymatically for 2hrs and subsequently loaded for 10 days under physiological loading. A PBS injected group was used as controls. Disc deformation was continuously monitored and changes in disc height recovery quantified using stretched-exponential fitting. Histological staining was performed on caprine discs to assess extracellular matrix production and immunohistochemistry performed to determine expression of catabolic protein expression.

The injection of collagenase and cABC induced mechanical behavior akin to that seen in human degeneration. A decrease in collagens and glycosaminoglycans (GAGs) was seen in enzyme injected discs, which was accompanied by increased cellular expression for degradative enzymes and catabolic cytokines.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 22 - 22
1 Oct 2019
Snuggs J Thorpe A Hutson C Partridge S Chiverton N Cole A Sammon C Le Maitre C
Full Access

Purpose of study and background

IVD degeneration is a major cause of Low back pain. We have previously reported an injectable hydrogel (NPgel), which induces differentiation of human MSCs to disc cells and integrates with NP tissue following injection in vitro. However, the translation of this potential treatment strategy into clinic is dependent on survival and differentiation of MSCs into disc cells within the degenerate IVD. Here, we investigated the viability and differentiation of hMSCs incorporated into NPgel cultured under conditions mimicking the healthy and degenerate microenvironment of the disc.

Methods and Results

MSCs were cultured in NP gel under 5% O2 in either: standard culture (DMEM, pH7.4); healthy disc (DMEM, pH7.1); degenerate disc (low glucose DMEM, pH6) or degenerate disc plus IL-1β. Following 4 weeks histological staining and immunohistochemical analysis investigated viability, ECM synthesis and matrix degrading enzyme expression.

Here we have shown that viability and NP cell differentiation of MSCs incorporated within NPgel was mostly unaffected by treatment with conditions such as low glucose, low pH and the presence of cytokines, all regarded as key contributors to disc degeneration. In addition, the NPgel was shown to prevent MSCs from displaying a catabolic phenotype with low expression of degradative enzymes, highlighting the potential of NPgel to differentiate hMSCs and protect them from the degenerate disc microenvironment.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 7 - 7
1 Sep 2019
Snuggs J Chiverton N Cole A Michael R Bunning R Conner M Le Maitre C
Full Access

Introduction

The intervertebral disc (IVD) is a highly hydrated and hyperosmotic tissue, water and salt content fluctuate daily due to mechanical loading. Resident IVD cells must adapt to this ever-changing osmotic environment, to maintain normal behaviour. However, during IVD degeneration the disc becomes permanently dehydrated and cells can no longer perform their correct function. Here, we investigated how human nucleus pulposus (NP) cells respond to altered osmolality with regards to cell size and the rate of water permeability, along with the potential involvement of aquaporins (AQPs) and transient receptor potential vanilloid (TRPV) membrane channels.

Methods

Water permeability of NP cells exposed to altered osmolality (225–525mOsm/kg) in the presence or absence of AQP and TRPV channel inhibitors was investigated with the cell-permeable calcein-AM fluorescent dye, and cell size determined using microscopy and flow cytometry.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 22 - 22
1 Sep 2019
Thorpe A Partridge S Snuggs J Vickers L Charlton F Cole A Chiverton N Sammon C Le Maitre C
Full Access

Background

Intervertebral disc (IVD) degeneration is a major cause of low back pain (LBP). We have developed an injectable hydrogel (NPgel), which following injection into bovine IVD explants, integrates with IVD tissue and promotes disc cell differentiation of delivered mesenchymal stem cells (MSCs) without growth factors. Here, we investigated the injection of NPgel+MSCs into IVD explants under degenerate culture conditions.

Methods and Results

The NPgel integrated with bovine and human degenerate Nucleus Pulposus (NP) tissue and hMSCs produced matrix components: aggrecan, collagen type II and chondroitin sulphate in standard and degenerate culture conditions. Significantly increased cellular immunopositivty for aggrecan was observed within native NP cells surrounding the site where NPgel+MSCs were injected (P≤0.05). In NP explants a significant decrease in catabolic factors were observed where NPgel+MSCs was injected in comparison to controls.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 39 - 39
1 Sep 2019
Daneshnia Y Snuggs J Scott A Le Maitre C
Full Access

Background

Intervertebral disc (IVD) degeneration is a major cause of low back pain (LBP). Degenerate discs are associated with accelerated cellular senescence. Cell senescence is associated with a secretory phenotype characterised by increased production of catabolic enzymes and cytokines. However to date, the mechanism of cell senescence within disc degeneration is unclear. Senescence can be induced by increased replication or induced by stress such as reactive oxygen species or cytokines. This study investigated the association of cellular senescence with markers of DNA damage and presence of cytoplasmic DNA (which in cancer cells has been shown to be a key regulator of the secretory phenotype), to determine mechanisms of senescence in disc degeneration.

Methods and Results

Immunohistochemistry for the senescence marker: p16INK4A was firstly utilised to screen human intervertebral discs for discs displaying at least 30% immunopostivity. These discs were then subsequently analysed for immunopostivity for DNA damage markers γH2AX and cGAS and the presence of cytoplasmic DNA. The number of immunopositive cells for p16INK4A positively correlated with the expression of γH2AX and cGAS. Senescent cells were also associated with the presence of cytoplasmic DNA.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 48 - 48
1 Sep 2019
Partridge S Thorpe A Le Maitre C Sammon C
Full Access

Introduction

Injectable hydrogels via minimally invasive surgery reduce the risk of infection, scar formation and the cost of treatment. Degradation of the intervertebral disc (IVD) currently has no preventative treatment. An injectable hydrogel material could restore disc height, reinforce local mechanical properties, and promote tissue regeneration. We present a hydrogel material Laponite® associated poly(N-isopropylacrylamide)-co-poly(dimethylacrylamide) (NPGel). Understanding how the components of this hydrogel system influence material properties, is crucial for tailoring treatment strategies for the IVD and other tissues.

Methods & Results

The effect of hydrogel wt./wt., clay and co-monomer percentages were assessed using a box-Behnken design. Rheometry, SEM, FTIR and swelling was used to measure changes in material properties in simulated physiological conditions. Rheometry revealed gelation temperature of hydrogel materials could be modified with dimethyl-acrylamide co-monomer; however, final maximum mechanical properties remained unaffected. Increasing the weight % and clay % increased resultant mechanical properties from ∼500–2500 G' (Pa), increased viscosity, but retained the ability to flow through a 26G needle at 39°C.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_2 | Pages 18 - 18
1 Feb 2018
Snuggs J Day R Chiverton N Cole A Bunning R Conner M Tryfonidou M Le Maitre C
Full Access

Introduction

During development the central disc contains large, vacuolated notochordal (NC) cells which in humans are replaced by mature nucleus pulposus (NP) cells during aging, but are maintained in certain breeds of dogs. During degeneration the disc becomes less hydrated which affects its normal function. Aquaporins (AQP) are a family of 13 transmembrane channel proteins that allow passage of water and are responsible for maintaining water homeostasis. AQP1, 2, 3 and 5 have been identified in the intervertebral disc (IVD). Here, expression of AQPs in human and canine IVDs to determine expression in NC v/s NP cells and whether expression changes during degeneration.

Methods

Gene expression of all 13 AQPs, were investigated in 102 human NP samples using RT-qPCR. AQPs which were expressed at gene level were further investigated by Immunohistochemistry in human and canine IVD samples.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_2 | Pages 17 - 17
1 Feb 2018
Thorpe A Vickers L Charlton F Cole A Chiverton N Sammon C Le Maitre C
Full Access

Background

Intervertebral disc (IVD) degeneration is a major cause of Low back pain (LBP). We have reported an injectable hydrogel (NPgel), which following injection into bovine NP explants, integrates with NP tissue and promotes NP cell differentiation of delivered mesenchymal stem cells (MSCs) without growth factors. Here we investigated the injection of NPgel+MSCs into bovine NP explants under degenerate culture conditions to mimic the in vivo environment of the degenerate IVD.

Methods

hMSCs were incorporated within liquid NPgel and injected into bovine NP explants alongside controls. Explants were cultured for 6 weeks under hypoxia (5%) with ± calcium 5.0mM CaCl2 or IL-1β individually or in combination to mimic the degenerate microenvironment. Cell viability was assessed by caspase 3 immunohistochemistry. Histological and immunohistochemical analysis was performed to investigate altered matrix synthesis and matrix degrading enzyme expression.