The aim of this study was to investigate whether mechanical loading induced by physical activity can reduce risk of sarcopenia in middle-aged adults. This was a longitudinal study based on a subset of UK Biobank data consisting of 1,918 participants (902 men and 1,016 women, mean age 56 years) who had no sarcopenia at baseline (assessed between 2006 and 2010). The participants were assessed again after 6 years at follow-up, and were categorized into no sarcopenia, probable sarcopenia, or sarcopenia according to the definition and algorithm developed in 2018 by European Working Group on Sarcopenia in Older People (EWGSOP). Physical activity was assessed at a time between baseline and follow-up using 7-day acceleration data obtained from wrist worn accelerometers. Raw acceleration data were then analysed to study the mechanical loading of physical activity at different intensities (i.e. very light, light, moderate-to-vigorous). Multinominal logistic regression was employed to examine the association between the incidence of sarcopenia and physical activity loading, between baseline and follow up, controlled for other factors at baseline including age, gender, BMI, smoking status, intake of alcohol, vitamin D and calcium, history of rheumatoid arthritis, osteoarthritis, secondary osteoporosis, and type 2 diabetes.Abstract
Objectives
Methods
A damaged vertebral body can exhibit accelerated ‘creep’ under constant load, leading to progressive vertebral deformity. However, the risk of this happening is not easy to predict in clinical practice. The present cadaveric study aimed to identify morphometric measurements in a damaged vertebral body that can predict a susceptibility to accelerated creep. Mechanical testing of 28 human spinal motion segments (three vertebrae and intervening soft tissues) showed how the rate of creep of a damaged vertebral body increases with increasing “damage intensity” in its trabecular bone. Damage intensity was calculated from vertebral body residual strain following initial compressive overload. The calculations used additional data from 27 small samples of vertebral trabecular bone, which examined the relationship between trabecular bone damage intensity and residual strain.Abstract
Objectives
Methods
Vertebroplasty helps to restore mechanical function to a fractured vertebra. We investigated how the Nine pairs of three-vertebra cadaver spine specimens (aged 67–90 yr) were compressed to induce fracture. One of each pair underwent vertebroplasty with PMMA, the other with a resin (Cortoss). Specimens were then creep-loaded at 1.0kN for 1hr. Before and after vertebroplasty, compressive stiffness was determined, and stress profilometry was performed by pulling a pressure-transducer through each disc whilst under 1.0kN load. Profiles indicated intradiscal pressure (IDP) and compressive load-bearing by the neural arch (FN) at both disc levels. Micro-CT was used to quantify cement fill in the anterior and posterior halves of each augmented vertebral body, and also in the region immediately adjacent to the fractured endplateIntroduction
Methods
Delamination of the annulus fibrosus is an early feature of disc degeneration, and it allows individual lamellae to collapse into the nucleus, or to bulge radially outwards. We 102 thoracolumbar motion segments (T8-9 to L5-S1) were dissected from 42 cadavers aged 19–92 yrs. Each specimen was subjected to 1 kN compression, while intradiscal compressive stresses were measured by pulling a pressure transducer along the disc's mid-sagittal diameter. Stress gradients were measured, in the anterior and posterior annulus, as the average rate of increase in compressive stress (MPa/mm) between the nucleus and the region of maximum stress in the annulus. Average nucleus pressure was also recorded. Disc degeneration was assessed macroscopically on a scale of 1–4.Introduction
Methods
The feature of disc degeneration most closely associated with pain is a large fissure in the annulus fibrosus. Nerves and blood vessels are excluded from normal discs by high matrix stresses and by high proteoglycan (PG) content. However, they appear to grow into annulus fissures in surgically-removed degenerated discs. We hypothesize that anulus fissures provide a micro-environment that is mechanically and chemically conducive to the in-growth of nerves and blood vessels. 18 three-vertebra thoraco-lumbar spine specimens (T10/12 to L2/4) were obtained from 9 cadavers aged 68-92 yrs. All 36 discs were injected with Toluidine Blue so that leaking dye would indicate major fissures in the annulus. Specimens were then compressed at 1000 N while positioned in simulated flexed and extended postures, and the distribution of compressive stress within each disc was characterised by pulling a pressure transducer through it in various planes. After testing, discs were dissected and the morphology of fissures noted. Reductions in stress in the vicinity of fissures were compared with average pressure in the disc nucleus. Distributions of PGs and collagen were investigated in 16 surgically-removed discs by staining with Safranin O. Digital images were analysed in Matlab to obtain profiles of stain density in the vicinity of fissures.Introduction
Methods
Fracture of an osteoporotic vertebral body reduces vertebral stiffness and decompresses the nucleus in the adjacent intervertebral disc. This leads to high compressive stresses acting on the annulus and neural arch. Altered load-sharing at the fractured level may influence loading of neighbouring vertebrae, increasing the risk of a fracture ‘cascade’. Vertebroplasty has been shown to normalise load-bearing by fractured vertebrae but it may increase the risk of adjacent level fracture. The aim of this study was to determine the effects of fracture and subsequent vertebroplasty on the loading of neighbouring (non-augmented) vertebrae. Fourteen pairs of three-vertebra cadaver spine specimens (67-92 yr) were loaded to induce fracture. One of each pair underwent vertebroplasty with PMMA, the other with a resin (Cortoss). Specimens were then creep loaded at 1.0kN for 1hr. In 17 specimens where the upper or lower vertebra fractured, compressive stress distributions were measured in the disc between adjacent non-fractured vertebrae by pulling a pressure transducer through the disc whilst under 1.0kN load. These ‘stress profiles’ were obtained at each stage of the experiment (in flexion and extension) in order to quantify intradiscal pressure (IDP), the size of stress concentrations in the posterior annulus (SP) and compressive load-bearing by anterior (FA) and posterior (FP) halves of the vertebral body and by the neural arch (FN).Background
Methods
In the annulus fibrosus of degenerated intervertebral discs, disruption to inter-lamellar cross-ties appears to lead to delamination, and the development of anulus fissures. We hypothesise that such internal disruption is likely to be driven by high gradients of compressive stress (i.e. large differences in stress from the nucleus to the mid anulus). Eighty-nine thoracolumbar motion segements, from T7/8 to L4/5, were dissected from 38 cadavers aged 42-96 yrs. Each was subjected to 1 kN compressive loading, while intradiscal compressive stresses were measured by pulling a pressure transducer along the disc's mid-sagittal diameter. Measurements were repeated in flexed and extended postures. Stress gradients were measured, in the anterior and posterior anulus of each disc, as the average rate of increase in stress (MPa/mm) between the nucleus and the region of maximum compressive stress in the anulus. Average nucleus pressure (IDP) was also recorded.Background
Methods
Vertebral osteoporotic fracture increases both elastic and time-dependent ('creep') deformations of the fractured vertebral body during subsequent loading. The accelerated rate of creep deformation is especially marked in central and anterior regions of the vertebral body where bone mineral density is lowest. In life, subsequent loading of damaged vertebrae may cause anterior wedging of the vertebral body which could contribute to the development of kyphotic deformity. The aim of this study was to determine whether gradual creep deformations of damaged vertebrae can be reduced by vertebroplasty. Fourteen pairs of spine specimens, each comprising three vertebrae and the intervening soft tissue, were obtained from cadavers aged 67-92 yr. Specimens were loaded in combined bending and compression until one of the vertebral bodies was damaged. Damaged vertebrae were then augmented so that one of each pair underwent vertebroplasty with polymethylmethacrylate cement, the other with a resin (Cortoss). A 1kN compressive force was applied for 1 hr before fracture, after fracture, and after vertebroplasty, while creep deformation was measured in anterior, middle and posterior regions of each vertebral body, using a MacReflex optical tracking system.Introduction
Methods
Osteoporotic vertebral deformities are conventionally attributed to fracture, although deformity is often insidious, and bone is known to “creep” under constant load. We hypothesise that deformity can arise from creep that is accelerated by minor injury. Thirty-nine thoracolumbar “motion segments” were tested from cadavers aged 42-92 yrs. Vertebral body BMD was measured using DXA. A 1.0 kN compressive force was applied for 30 mins, while the height of each vertebral body was measured using a MacReflex optical tracking system. After 30 mins recovery, one vertebral body from each specimen was subjected to controlled micro-damage (<5mm height loss) by compressive overload, and the creep test was repeated. Load-sharing between the vertebral body and neural arch was evaluated from stress measurements made by pulling a pressure transducer through the intervertebral disc. Creep was inversely proportional to BMD below a threshold BMD of 0.5 g/cm2 (R2=0.30, P<0.01) and did not recover substantially after unloading. Creep was greater in the anterior cortex compared to the posterior (p=0.01) so that anterior wedge deformity occurred. Vertebral micro-damage usually affected a single endplate, causing creep of that vertebra to increase in proportion to the severity of damage. Anterior wedging of vertebral bodies during creep increased by 0.10o (STD 0.20o) for intact vertebrae, and by 0.68o (STD 1.34o) for damaged vertebrae. Creep is substantial in elderly vertebrae with low BMD, and is accelerated by micro-damage. Preferential loss of trabeculae from the anterior vertebral body could explain greater anterior creep and vertebral wedging.
To investigate whether restoration of mechanical function and spinal load-sharing following vertebroplasty depends upon cement distribution. Fifteen pairs of cadaver motion segments (51-91 yr) were loaded to induce fracture. One from each pair underwent vertebroplasty with PMMA, the other with a resin (Cortoss). Various mechanical parameters were measured before and after vertebroplasty. Micro-CT was used to determine volumetric cement fill, and plane radiographs (sagittal, frontal, and axial) to determine areal fill, for the whole vertebral body and for several specific regions. Correlations between volumetric fill and areal fill for the whole vertebral body, and between regional volumetric fill and changes in mechanical parameters following vertebroplasty, were assessed using linear regression. For Cortoss, areal and volumetric fills were significantly correlated (R=0.58-0.84) but cement distribution had no significant effect on any mechanical parameters following vertebroplasty. For PMMA, areal fills showed no correlation with volumetric fill, suggesting a non-uniform distribution of cement that influenced mechanical outcome. Increased filling of the vertebral body adjacent to the disc was associated with increased intradiscal pressure (R=0.56, p<0.05) in flexed posture, and reduced neural arch load bearing (FN) in extended posture (R=0.76, p<0.01). Increased filling of the anterior vertebral body was associated with increased bending stiffness (R=0.55, p<0.05). Cortoss tends to spread evenly within the vertebral body, and its distribution has little influence on the mechanical outcome of vertebroplasty. PMMA spreads less evenly, and its mechanical benefits are increased when cement is concentrated in the anterior vertebral body and adjacent to the intervertebral disc.
Osteoporotic fracture reduces vertebral stiffness, and alters spinal load-sharing. Vertebroplasty partially reverses these changes at the fractured level, but is suspected to increase deformations and stress at adjacent levels. We examined this possibility. Twelve pairs of three-vertebra cadaver spine specimens (67-92 yr) were loaded to induce fracture. One of each pair underwent vertebroplasty with PMMA, the other with a resin (Cortoss). Specimens were then creep-loaded at 1.0kN for 1hr. In 15 specimens, either the uppermost or lowest vertebra was fractured, so that compressive stress distributions could be determined in the disc between adjacent non-fractured vertebrae. Stress was measured in flexion and extension, at each stage of the experiment, by pulling a pressure-transducer through the disc whilst under 1.0kN load. Stress profiles quantified intradiscal pressure (IDP), stress concentrations in the posterior annulus (SPP), and compressive load-bearing by the neural arch (FN). Elastic deformations in adjacent vertebrae were measured using a MacReflex tracking system during 1.0kN compressive ramp loading.Introduction
Methods
Vertebral osteoporotic fracture increases both elastic and time-dependent (‘creep’) deformations of the fractured vertebral body during subsequent loading. This is especially marked in central and anterior regions of the vertebral body, and could explain the development of kyphotic deformity in life. We hypothesise that vertebroplasty can reduce these creep deformations. Twelve Introduction
Methods
Fissures in the anulus fibrosus are common in disc degeneration, and are associated with discogenic pain. We hypothesise that anulus fissures are conducive to the ingrowth of blood vessels and nerves. To investigate the mechanical and chemical micro-environment of anulus fissures.Background
Purpose
stress distributions on fractured and adjacent vertebral bodies, load-sharing between the vertebral bodies and neural arch, and cement leakage.