Total hip replacement failure due to fretting-corrosion remains a clinical concern. We recently described that damage within CoCrMo femoral heads can occur either by mechanically-dominated fretting processes leading to imprinting (via rough trunnions) and surface fretting (via smooth trunnions), or by a chemically-dominated etching process along preferential corrosion sites, termed “column damage”. These corrosion sites occur due to banding of the alloy microstructure. Banding is likely caused during thermo-mechanical processing of the alloy and is characterized by local molybdenum depletion. It was the objective of this study to quantify material loss from femoral heads with severe corrosion, identify the underlying damage modes, and to correlate the damage to the alloy's microstructure. 105 femoral heads with a Goldberg score 4 were evaluated. Coordinate measuring machine data was used to compute material loss and visualize damage features. Time Introduction
Methods
The aim of this study was to develop a novel computational model for estimating head/stem taper mechanics during different simulated assembly conditions. Finite element models of generic cobalt-chromium (CoCr) heads on a titanium stem taper were developed and driven using dynamic assembly loads collected from clinicians. To verify contact mechanics at the taper interface, comparisons of deformed microgroove characteristics (height and width of microgrooves) were made between model estimates with those measured from five retrieved implants. Additionally, these models were used to assess the role of assembly technique—one-hit versus three-hits—on the taper interlock mechanical behaviour.Aims
Methods
A retrospective longitudinal study was conducted to compare directly volumetric wear of retrieved polyethylene inserts to predicted volumetric wear modelled from individual gait mechanics of total knee arthroplasty (TKA) patients. In total, 11 retrieved polyethylene tibial inserts were matched with gait analysis testing performed on those patients. Volumetric wear on the articular surfaces was measured using a laser coordinate measure machine and autonomous reconstruction. Knee kinematics and kinetics from individual gait trials drove computational models to calculate medial and lateral tibiofemoral contact paths and forces. Sliding distance along the contact path, normal forces and implantation time were used as inputs to Archard’s equation of wear to predict volumetric wear from gait mechanics. Measured and modelled wear were compared for each component.Aims
Methods
Improper seating during head/stem assembly can lead to unintended micromotion between the femoral head and stem taper—resulting in fretting corrosion and implant failure.1 There is no consensus—either by manufacturers or by the surgical community—on what head/stem taper assembly method maximizes modular junction stability in total hip arthroplasty (THA). A 2018 clinical survey2 found that orthopedic surgeons prefer applying one strike or three, subsequent strikes when assembling head/stem taper. However, it has been suggested that additional strikes may lead to decreased interference strength. Additionally, the taper surface finish—micro-grooves—has been shown to affect taper interference strength and may be influenced by assembly method. The objective of this study was to employ a novel, micro-grooved finite element (FEA) model of the hip taper interface and assess the role of head/stem assembly method—one vs three strikes—on modular taper junction stability. A two-dimensional, axisymmetric FEA model representative of a CoCrMo femoral head taper and Ti6Al4V stem taper was created using median geometrical measurements taken from over 100 retrieved implants.3 Surface finish—micro-grooves—of the head/stem taper were modeled using a sinusoidal function with amplitude and period corresponding to retrieval measurements of micro-groove height and spacing, respectively. Two stem taper micro-groove geometries— “rough” and “smooth”—were modeled corresponding to the median and 5th percentile height and spacing measurements from retrievals. All models had a 3' (0.05°), proximal-locked angular mismatch between the tapers. To simulate implant assembly during surgery, multiple dynamic loads (4kN, 8kN, and 12kN) were applied to the femoral head taper in a sequence of one or three strikes. The input load profile (Figure 1) used for both cases was collected from surgeons assembling an experimental setup with a three-dimensional load sensor. Models were assembled and meshed in ABAQUS Standard (v 6.17) using four-node linear hexahedral, reduced integration elements. Friction was modeled between the stem and head taper using surface-to-surface formulation with penalty contact (µ=0.2). A total of 12 implicit, dynamic simulations (3 loads × 2 assembly sequences × 2 stem taper surface finishes) were run, with 2 static simulations at 4kN for evaluating inertial effects. Outcome variables included contact area, contact pressure, equivalent plastic strain, and pull-off force.Introduction
Methods
Studies of retrieved total knee replacement (TKR) components demonstrate that Eleven retrieved ultra-high molecular weight polyethylene (UHMWPE) cruciate-retaining tibial liner components from ten separate patients (implantation time = 8.6±5.6 years) had matching gait trials of normal level walking for each knee. Volume loss on retrieved components was calculated using a coordinate measuring machine and autonomous reconstruction.3 Motion analysis of normal level walking gait had been conducted between 1986 and 2005 for various previous studies and stored in a consented Human Mechanics Repository, ranging from pre-operative to long-term post-operative testing. Contact location between the femoral component and the tibial component on the medial and lateral plateaus were calculated throughout stance.4 A previously validated and fine-tuned parametric numerical model was used to calculate TKR contact forces for each gait trial.5 Vertical contact forces and contact paths on the medial and lateral plateaus were input as normal force and sliding distance to a simplified Archard equation for wear with material wear constant = 2.42 × 10−7 mm3/Nm2,6 to compute average wear per gait cycle. Wear rates were calculated using linear regression, and Pearson correlation examined correlations between modeled and measured wear.Introduction
Methods
Aseptic loosening is the leading cause of total knee arthroplasty (TKA) failure in the long term, of which osteolysis from polyethylene wear debris remains a problem that can limit the lifetime of TKA past the second decade. To help speed up design innovations, our goal was to develop a computational framework that could efficiently predict the effect of many sources of variability on TKA wear—including design, surgical, and patient variability. We developed a computational framework for predicting TKA contact mechanics and wear. The framework accepts multiple forms of input data: patient-specific, population-specific, or standardized motions and forces. CAD models are used to create the FEA mesh. An analytical wear model, calibrated from materials testing (wheel-on-flat) experiments, is fully integrated into the FEA process. Isight execution engine runs a design of experiments (DOE) analysis with an outcome variable, such as volumetric wear, to guide statistical model output. We report two DOE applications to test the utility of the computational framework for performing large variable studies in an efficient manner: one to test the sensitivity of TKA wear to the femoral center of rotation, and the second to test the sensitivity of TKA wear to gait input perturbations.Background
Methods