To date, the value of culture results after a debridement, antibiotics and implant retention (DAIR) for early (suspected) prosthetic joint infection (PJI) as risk indicators in terms of prosthesis retention is not clear. At one year follow-up, the relative risk of prosthesis removal was determined for culture-positive and culture-negative DAIRs after primary total hip or knee arthroplasty. The secondary aim was to explore differences in patient characteristics, infection characteristics and outcomes between these two groups. A retrospective regional registry study was performed in a group of 359 patients (positive cultures: n = 299, negative cultures n = 60) undergoing DAIR for high suspicion of early PJI in the period from 2014 to 2019. Differences in patient characteristics, deceased patients and number of subsequent DAIRs between the positive and negative DAIR groups were analyzed using independent t-tests, Mann-Whitney, Pearson's Chi-square tests and Fisher's Exact tests.Aim
Methods
National Joint Replacement Registries, which are important sources for periprosthetic joint infection (PJI) data, report an average PJI incidence ranging from 0.5 to 2.0%. Unfortunately, national registries including the Dutch Arthroplasty Register (LROI), are not specifically designed to register PJI. In the Netherlands, the LROI is a nationwide population-based registry with an overall completeness of more than 95%.3 To ensure usability and reliability of PJI data from the LROI, it is important to evaluate the quality and completeness of these data. From 2013 onwards, eight hospitals in the South-East of the Netherlands, collected their PJI data in a detailed regional infection cohort (RIC), specifically designed for this purpose. This study aimed to determine the accuracy and completeness of PJI registration (hip and knee arthroplasty) in the LROI, by comparing the LROI with the RIC. All patients registered with an acute PJI in the RIC between 2014–2018 were selected for the study and were matched with the LROI. According to the Workgroup of American Musculoskeletal Infections Society (MSIS), an acute PJI was defined as at least two phenotypically identical pathogens, isolated in cultures from at least two separate tissues, obtained from the affected peri-prosthetic tissue during the DAIR treatment (debridement, antibiotics, irrigation, and retention). Only PJI occurring within 90 days after primary hip or knee arthroplasty were included. The LROI data and completeness was based on the entered procedures and documented reason for revision infection, which was not specially based on the MSIS criteria. After checks on missing and incorrectly data, the completeness of registration in the LROI was calculated by comparing the number of registrations in the LROI with data from the RIC (gold standard).Aim
Method
Surgical navigation systems enable surgeons to carry out surgical interventions more accurately and less invasively, by tracking the surgical instruments inside human body with respect to the target anatomy. Currently, optical tracking (OPT) is the gold standard in surgical instrument tracking because of its sub-millimeter accuracy, but is constrained by direct line of sight (LOS) between camera sensors and active or passive markers. Electromagnetic tracking (EMT) is an alternative without the requirement of LOS, but subject to environmental ferromagnetic distortion. An intuitive idea is to integrate respective strengths of them to overcome respective weakness and we aim to develop a tightly-coupled method emphasising the interactive coupled sensor fusion from magnetic and optical tracking data. In order to get real-time position and orientation of surgical instruments in the surgical field, we developed a new tracking system, which is aiming to overcome the constraints of line-of-sight and paired-point interference in surgical environment. The primary contribution of this study is that the LOS and point correspondence problems can be mitigated using the initial measurements of EMT, and in turn the OPT result can provide initial value for non-linear iterative solver of EMT sensing module. We developed an integrated optical and electromagnetic tracker comprised of custom multiple infrared cameras, optical marker, field generator and sensing coils, because the current commercial optical or magnetic tracker typically consists of unchangeable lower level proprietary hardware and firmware. For the instrument-affixed markers, the relative pose between passive optical markers and magnetic coils is calibrated. The pose of magnetic sensing coils calculated by electromagnetic sensing module, can speed up the extraction of fiducial points and the point correspondences due to the reduced search space. Moreover, the magnetic tracking can compensate the missing information when the optical markers are temporarily occluded. For magnetic sensing subsystem comprised of 3-axis transmitters and 3-axis receiving coils, the objective function for nonlinear pose estimator is given by the summation of the square difference between the measured sensing data and theoretical data from the dipole model. Non-linear optimisation is computational intensive and requires initial pose estimation value. Traditionally, the initial value is calculated by equation-based algorithm, which is sensitive to noise. Instead, we get the initial value from the measurement of optical tracking subsystem. The real-time integrated tracking system was validated to have tracking errors about 0.87mm. The proposed interactive and tightly coupled sensor-fusion of magnetic-optical tracking method is efficient and applicable for both general surgeries as well as intracorporeal surgeries.