Abstract
Surgical navigation systems enable surgeons to carry out surgical interventions more accurately and less invasively, by tracking the surgical instruments inside human body with respect to the target anatomy. Currently, optical tracking (OPT) is the gold standard in surgical instrument tracking because of its sub-millimeter accuracy, but is constrained by direct line of sight (LOS) between camera sensors and active or passive markers. Electromagnetic tracking (EMT) is an alternative without the requirement of LOS, but subject to environmental ferromagnetic distortion. An intuitive idea is to integrate respective strengths of them to overcome respective weakness and we aim to develop a tightly-coupled method emphasising the interactive coupled sensor fusion from magnetic and optical tracking data. In order to get real-time position and orientation of surgical instruments in the surgical field, we developed a new tracking system, which is aiming to overcome the constraints of line-of-sight and paired-point interference in surgical environment. The primary contribution of this study is that the LOS and point correspondence problems can be mitigated using the initial measurements of EMT, and in turn the OPT result can provide initial value for non-linear iterative solver of EMT sensing module.
We developed an integrated optical and electromagnetic tracker comprised of custom multiple infrared cameras, optical marker, field generator and sensing coils, because the current commercial optical or magnetic tracker typically consists of unchangeable lower level proprietary hardware and firmware. For the instrument-affixed markers, the relative pose between passive optical markers and magnetic coils is calibrated. The pose of magnetic sensing coils calculated by electromagnetic sensing module, can speed up the extraction of fiducial points and the point correspondences due to the reduced search space. Moreover, the magnetic tracking can compensate the missing information when the optical markers are temporarily occluded. For magnetic sensing subsystem comprised of 3-axis transmitters and 3-axis receiving coils, the objective function for nonlinear pose estimator is given by the summation of the square difference between the measured sensing data and theoretical data from the dipole model. Non-linear optimisation is computational intensive and requires initial pose estimation value. Traditionally, the initial value is calculated by equation-based algorithm, which is sensitive to noise. Instead, we get the initial value from the measurement of optical tracking subsystem. The real-time integrated tracking system was validated to have tracking errors about 0.87mm. The proposed interactive and tightly coupled sensor-fusion of magnetic-optical tracking method is efficient and applicable for both general surgeries as well as intracorporeal surgeries.