Task presented here, (one of 5) performed by turning a key 90 degrees clockwise. Principal component analysis (PCA) was applied to the waveforms of group A, using the procedure illustrated by Deluzio et al.,1997 for use with walking gait patterns. A 90% trace criterion was used to calculate the number of principal components (PCs) to retain.
Radiolucencies are generally thought to be a manifestation of loosening. They are commonly seen under the tibial component of the Oxford Unicompartmental knee replacement. However, they are not associated with long term failure [ Eight medial Oxford Unicompartmental knee prostheses were examined post-operatively, at 12 months and at 24 months using Roentgen Stereophotogrammetric Analysis (RSA). The serial radiographs were calibrated and three dimensional CAD models were matched to the extracted component shapes. Implanted bone marker balls were then selected on all radiographs. The components were superimposed. Migration calculation was achieved by comparing relative positions of components to bone marker balls in the serial radiographs. Fluoroscopically screened X-rays were taken to determine whether there were any radiolu-cencies under the tibial component. By 12 months, the femoral component had migrated significantly anteriorly (0.35 mm) and proximally (0.61 mm). The tibial component had migrated significantly distally (0.42 mm) and anteriorly (0.47 mm). Although on average there appeared to be a small further migration between 12 and 24 months, this was not statistically significant in any direction. Six of the eight patients had radiolucencies at 24 months. None of the radiolucencies were was complete. The maximum radiolucency was 1 mm thick and the average was 0.57 mm. There was no correlation between radiolucency and migration. The proximal femoral migration and distal tibial migration can be explained by the load across the knee. We cannot yet explain the anterior tibial migration. Radiolucencies almost always occur and are not related to migration.This confirms they are not associated with loosening.
Polyethylene wear can be an important cause of knee replacement failure. Six TKRs in young, active patients with excellent Oxford Knee Scores and Knee Society Scores, mean 76 months post knee replacement and 5 control patients, 2 weeks post TKR, were selected. Each patient had weight bearing stereo radiographs of at 0, 15, 30, 45 and 60 degrees of flexion while standing in a calibration grid. These x-rays were analysed using our Radio Stereometric Analysis (RSA) system. The three-dimensional shape of the TKR (manufacturer’s computer aided design model) was matched to the TKR silhouette on the calibrated stereo radiographs for each angle of flexion. The relative positions of the femoral and tibial components in space were then determined and the linear and volumetric penetration was calculated using Matlab software. The accuracy of the system was found to be 0.3mm (CAD model tolerance 0.25mm). The mean linear wear in the control patients was 0.02mm (range −0.19 to +0.23mm). Average linear penetration in the study group was found to be 0.6 mm at 6 years, giving an overall linear wear rate of 0.1mm/year. Average penetration volume at 76 months was 399mm3. The average volumetric wear rate was 63mm3/year. It is possible to measure volumetric wear in vivo using RSA. Volumetric wear rate was found to be 63mm3 per year. Studies on retrieved normally functioning hip replacements have shown volumetric wear rates of 35mm3 per year. However, clinical outcomes of knee replacements are comparable to those of hip replacements, suggesting that the knee has a more effective mechanism for dealing with polyethylene wear particles.
Method: Six TKRs in young, active patients with excellent Oxford Knee Scores and Knee Society Scores, mean 76 months post knee replacement and 5 control patients, 2 weeks post TKR, were selected. Each patient had weight bearing stereo radiographs of at 0, 15, 30, 45 and 60 degrees of flexion while standing in a calibration grid. These x-rays were analysed using our Radio Stereometric Analysis (RSA) system. The three-dimensional shape of the TKR (manufacturer’s computer aided design model) was matched to the TKR silhouette on the calibrated stereo radiographs for each angle of flexion. The relative positions of the femoral and tibial components in space were then determined and the linear and volumetric penetration was calculated using Matlab software.
*Oxford Hip and Knee Group: P McLardy-Smith, C Dodd, D Murray &
R Gundle
We used an experimental rabbit model of leg lengthening to study the morphology and function of muscle after different distraction rates. Lengthening was in twice-daily increments from 0.4 to 4 mm per day. New contractile tissue formed during lengthening, but some damage to the muscle fibres was seen even at rates of less than 1 mm per day; abnormalities increased with larger rates of lengthening. There was proliferation of fibrous tissue between the muscle fibres at distraction rates of over 1 mm per day. Active muscle function showed adaptation when the rate was 1.0 mm per day or less, but muscle compliance was normal only after rates of 0.4 mm per day. Muscle responded more favourably at rates of distraction slower than those shown to lead to the most prolific bone formation. At present the rate of distraction in clinical practice is determined mainly by factors which enhance osteogenesis. Our study suggests that it may be advisable to use a slower rate of elongation in patients with poor muscle compliance associated with the underlying pathology; this will allow better accommodation by the contractile and connective tissues of the muscles.
We measured the driver reaction times of 40 patients before total knee replacement (TKR) and 4, 6, 8 and 10 weeks after operation. The ability to perform an emergency stop was assessed as the time taken to achieve a brake pressure of 100 N after a visual stimulus. There were 18 drivers and 11 non-drivers; the latter had longer reaction times. In drivers, the ability to transfer the right foot from accelerator to brake pedal did not recover to preoperative levels for eight weeks after right TKR and was unchanged after left TKR. Patients should be advised that they should not drive for at least eight weeks after right TKR.
Failure of conservative treatment is the usual indication for the reconstruction of a knee with deficiency of the anterior cruciate ligament (ACL) and this depends on subjective judgement. The ability of muscles to protect the subluxing joint by reflex contraction could provide an objective measurement. We have studied 30 patients with unilateral ACL deficiency by measuring the latency of reflex hamstring contraction. We found that the mean latency in the injured leg was nearly twice that in the unaffected limb (99 ms and 53 ms respectively). There was a significant correlation between the differential latency and the frequency of 'giving way' indicating that functional instability may be due, in part, to loss of proprioception. Measures of proprioception, including reflex hamstring latency, may be useful in providing an objective assessment of the efficacy of conservative treatment and the need for surgery.