Advertisement for orthosearch.org.uk
Results 1 - 20 of 35
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 48 - 48
1 Mar 2017
Tei K Minoda M Shimizu T Matsuda S Matsumoto T Kurosaka M Kuroda R
Full Access

Introduction

Recently, tibial insert design of cruciate-substituting (CS) polyethylene insert is employed and widely used. However, in vivo kinematics of using CS polyethylene insert is still unclear. In this study, it is hypothesized that CS polyethylene insert leads to stability of femoro-tibial joint as well as posterior-stabilized (PS) polyethylene insert, even if PCL is sacrificed after TKA. The purpose of this study is an investigation of in vivo kinematics of femoro-tibial joint with use of CS polyethylene insert before and after PCL resction using computer assisted navigation system and tensor device intra-operatively in TKA.

Materials and Methods

Sixty-one consecutive patients who had knees of osteoarthritis with varus deformity were investigated in this study. All TKAs (Triathlon, Stryker) were performed using computer assisted navigation system. During surgery, using a tensor device, after bony cut of femur and tibia, joint gaps were assessed in 0 and 90 degrees in flexion. Then, CS polyethylene tibial trial insert were inserted after trial implantation of femoral and tibial components, before and after resection of PCL, respectively. The kinematic parameters of the soft-tissue balance, and amount of coronal and sagittal relative movement between femur and tibia were obtained by interpreting kinematics, which display tables throughout the range of motion (ROM) in the navigation system. In each ROM (30, 45, 60, 90, max degrees), the data were analyzed with a ANOVA test, and mean values were compared by the multiple comparison test (Turkey HSD test) (p< 0.05).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 25 - 25
1 Feb 2017
Inokuchi T Ishida K Shibanuma N Matsumoto T Takayama K Toda A Kodato K Kuroda R Kurosaka M
Full Access

Introduction

Range of motion (ROM) is one of the important factor for better functional outcome after total knee arthroplasty (TKA). In posterior cruciate ligament (PCL) retaining (CR) TKA, adequate PCL function is suggested to be important for better kinematics and ROM. However, intraoperative assessment of PCL function is relatively subjective, thus more objective evaluation is required to improve the functional outcomes after TKA. In clinical practice, tibial posterior sagging sign is well known to indicate PCL deficiency. Hence, we hypothesized that intraoperative femorotibial antero-posterior (AP) changes at 90° of flexion indirectly reflected the PCL function and associated with postoperative maximum flexion angles in CR TKA. The purpose of this study was to investigate the correlation between intraoperative femorotibial AP changes at 90° of flexion and postoperative maximum flexion range in navigated CR TKA.

Methods

Between March 2014 and March 2015, forty patients with varus osteoarthritis underwent primary TKA. All of the cases were using same types of implant (Triathlon; Stryker Orthopedics, Mahwah, NJ, USA), with an image-free navigation system (Stryker 4.0 image-free computer navigation system; Stryker). PCL was retained and cruciate substituting (CS) inserts were used in all cases. The mean age at the time of surgery was 71.7 ± 6.8 years old (ranging: 62 – 85). The mean follow-up was 10.9 ± 6.4 months. After minimum release of medial and lateral soft tissue, resection of anterior cruciate ligaments, and protection of PCL, registration and kinematic measurements were performed prior to bone resection. The kinematic measurements were performed again after implantation. The center of proximal tibial and distal femur were defined during registration. The point of proximal tibia was projected to the mechanical axis of femur and the distance between the projected point and the distal femur at 90° of flexion were measured and defined as femorotibial AP position. Distal relative to the center of distal femur indicates as minus, and proximal relative to the point indicates as plus. The correlation between the intraoperative changes of AP position and postoperative maximum flexion angles were investigated.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 29 - 29
1 Feb 2017
Ishida K Shibanuma N Toda A Kodato K Inokuchi T Matsumoto T Takayama K Kuroda R Kurosaka M
Full Access

PURPOSE

Total knee arthroplasty (TKA) is a successful technique for treating painful osteoarthritic knees. However, the patients' satisfaction is not still comparable with total hip arthroplasty. Basically, the conditions with operated joints were anterior cruciate ligament (ACL) deficient knees, thus, the abnormal kinematics is one of the main reason for the patients' incomplete satisfaction. Bi-cruciate stabilized (BCS) TKA was established to reproduce both ACL and posterior cruciate ligament (PCL) function and expected to improve the abnormal kinematics. However, there were few reports to evaluate intraoperative kinematics in BCS TKA using navigation system. Hence, the aim in this study is to reveal the intraoperative kinematics in BCS TKA and compare the kinematics with conventional posterior stabilized (PS) TKA.

Materials and Methods

Twenty five consecutive subjects (24 women, 1 men; average age, 77 years; age range, 58–85 years) with varus osteoarthritis undergoing navigated BCS TKA (Journey II, Smith&Nephew) were enrolled in this study. An image-free navigation system (Stryker 4.0 image-free computer navigation system; Stryker) was used for the operation. Registration was performed after minimum medial soft tissue release, ACL and PCL resection, and osteophyte removal. Then, kinematics including tibiofemoral rotational angles from maximum extension to maximum flexion were recorded. The measurements were performed again after implantation. We compared the kinematics with the kinematics of paired matched fifty subjects who underwent conventional posterior stabilized (PS) TKA (25 subjects with Triathlon, Stryker; 25 subjects with PERSONA, ZimmerBiomet) using navigation statistically.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 65 - 65
1 May 2016
Takayama K Matsumoto T Muratsu H Ishida K Kuroda R Kurosaka M
Full Access

The influence of amount of tibial posterior slope changes on joint gap and postoperative range of motion was investigated in 35 patients undergoing unicompartmental knee arthroplasty (UKA). Component gap between the medial tibial osteotomy surface and the femoral trial prosthesis was measured throughout the range of motion using a tensor. The mean tibial posterior slope decreased from 10.2 to 7.3 degrees. Increased tibial slope change was positively correlated with component gap differences of 90° −10°, 120° −10°, and 135° −10° and negatively correlated with postoperative extension angle. Increasing tibial slope should be avoided to achieve full extension angle after UKA.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 52 - 52
1 May 2016
Ishida K Shibanuma N Toda A Matsumoto T Takayama K Sasaki H Oka S Kodato K Kuroda R Kurosaka M
Full Access

Purpose

To investigate the tibiofemoral rotational profiles during surgery in navigated posterior-stabilized (PS) total knee arthroplasty (TKA) and investigated the effect on postoperative maximum flexion angles.

Materials and Methods

At first, twenty-five consecutive subjects (24 women and 1 man; age: mean, 77 years; range, 58–85 years) with varus osteoarthritis treated with navigated PS TKA (Triathlon, Stryker, Mahwah, NJ) were enrolled in this study. Kinematic parameters, including the tibiofemoral rotational angles from maximum extension to maximum flexion, were recorded thrice before and after PCL resections, and after implantation. The effect of PCL resection and component implantation on tibiofemoral rotational kinematics was statistically evaluated. Then, the effect of tibiofemoral rotational alignment changes on the postoperative maximum angles were retrospectively examined with 96 subjects (84 women, 12 men; average age, 76 years; age range, 56–88 years) who underwent primary TKA.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 24 - 24
1 May 2016
Matsumoto T Shibanuma N Takayama K Sasaki H Ishida K Nakano N Matsushita T Kuroda R Kurosaka M
Full Access

The influence of soft tissue balance in mobile-bearing posterior-stabilized (PS) total knee arthroplasty (TKA) on the patellofemoral (PF) joint was investigated in thirty varus-type osteoarthritis patients. Intraoperative soft tissue balance including joint component gap and varus/valgus ligament balance and the medial/lateral patellar pressure were measured throughout the range of motion after the femoral component placement and the PF joint repair. The lateral patellar pressure, which was significantly higher than the medial side in the flexion arc, showed inverse correlation with the lateral laxity at 60° and 90° of flexion. The lateral patellar pressure at 120° and 135° of flexion also inversely correlated with the postoperative flexion angle. Surgeons should take medial and lateral laxity into account when considering PF joint kinematics influencing postoperative flexion angle in PS TKA.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 76 - 76
1 May 2016
Tei K Kihara S Shimizu T Matsumoto T Kurosaka M Kuroda R
Full Access

Introduction

Recently, tibial insert design of cruciate-substituting (CS) polyethylene insert is employed. However, in vivo kinematics of using CS polyethylene insert is still unclear. In this study, it is hypothesized that CS polyethylene insert leads to stability of femolo-tibial joint as well as posterior-stabilized (PS) polyethylene insert, even if PCL is sacrificed after TKA. The purpose of this study is an investigation of in vivo kinematics of femolo-tibial joint with use of CS polyethylene insert before and after PCL resction using computer assisted navigation system intra-operatively in TKA.

Materials and Methods

Twenty-four consecutive patients who had knees of osteoarthritis with varus deformity were investigated in this study. All TKAs (Triathlon, Stryker) were performed using computer assisted navigation system. In all patients, difference between extension and flexion gap was under 3mm after bony cut of femur and tibia. During surgery, CS polyethylene tibial trial insert were inserted after trial implantation of femoral and tibial components, before and after resection of PCL, respectively. The kinematic parameters of the soft-tissue balance, and amount of coronal (valgus/varus), sagittal (anterior/posterior) and rotational relative movement between femur and tibia were obtained by interpreting kinematics, which display tables throughout the range of motion (ROM) (Figure1). During record of kinematics, the surgeon gently lifted the experimental thigh three times, flexing the hip and knee. In each ROM (30, 45, 60, 90, max degrees), the data were analyzed with paired t-test, and an ANOVA test, and mean values were compared by the multiple comparison test (Turkey HSD test) (p < 0.05).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 68 - 68
1 May 2016
Muratsu H Takemori T Matsumoto T Annziki K Kudo K Yamaura K Minamino S Oshima T Maruo A Miya H Kuroda R Kurosaka M
Full Access

Introduction

To achieve well aligned and balanced knee is essential for the post-operative outcome in total knee arthroplasty (TKA). Gap balancing technique can adjust the bone cut depending on the soft tissue balance in addition to soft tissue releases. Therefore, gap balancing technique would be more advantageous in soft tissue balance comparing to measured resection technique (MRT) in which soft tissue balancing relayed on soft tissue releases alone. Nevertheless, the influence of surgical technique on the post-operative knee stability has not been fully investigated.

Objective

We introduced a new surgical technique (medial gap technique: MGT) according to modified gap technique regarding medial knee stability as important. The intra-operative soft tissue balance and post-operative knee stability were compared between MGT and MRT in posterior-stabilized (PS) TKA for varus type osteoarthritic knees.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 32 - 32
1 May 2016
Hashimoto S Hayashi S Kanzaki N Chinzei N Kuroda R Kurosaka M
Full Access

Introduction

The advance of surgical technique and implant design have led to improvement in total hip arthroplasty (THA), and short stem THA is now gaining number as a treatment option for younger patients to preserve bone in the proximal femur for a future revision. The SMF stem is shorter stem, and requires a slightly higher neck resection and implanted in slight varus to contact at lateral cortex. Developmental dysplasia of the hip (DDH) is the most common cause to hip osteoarthritis (OA) in Japan, and the morphology of the dysplastic femur is narrow canal and increased anteversion. Thus, the purpose of this study is to evaluate the SMF stem design can fit for Japanese patients, using CT based 3-D template planning.

Methods

We evaluated 30 patients who required THA in our institution. Inclusion criteria are hip OA, but cases with post-trauma, post-osteotomy, and any other hip disease in childhood are excluded. Patients were selected with their femoral anteversion, based on the dispersion of anteversion in dysplastic hip population, which was reported by Noble and collegues in 2003. Preoperative planning with ZedHip software (Lexi, Japan) was performed by established protocol. The center of socket was placed at 15mm proximal from teardrop and medialized to primary acetabulum, with 40° of radiographic inclination and 20° of anteversion. Neck resection of femur was 20mm proximal from the top of smaller trochanter, and stem was placed with lateral fit at distal and medial fit at calcar with appropriate size. Stem offset was selected by leg extension and balanced shenton line. Finally, ROM simulation was performed and the socket anteversion was arranged to achieve the optimal ROM. And then, SMF stem alignment and appropriate fitting was evaluated in Japanese OA cases.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 34 - 34
1 May 2016
Hayashi S Hashimoto S Kanzaki N Kuroda R Kurosaka M
Full Access

Purpose

The purpose of this study was to evaluate periprosthetic bone mineral density (BMD) changes around a cementless short tapered-wedge stem and determine correlations between BMD changes and various clinical factors, including daily activity, after total hip arthroplasty (THA) with a short tapered-wedge stem.

Methods

The study included 65 patients (65 joints) who underwent THA with a TriLock stem. At baseline, and 6, 12, and 24 months postoperatively, BMDs of the seven Gruen zones were evaluated using dual-energy X-ray absorptiometry. Correlations were determined between BMD changes and clinical factors, including the Harris hip score, body mass index, University of California at Los Angeles (UCLA) activity rating score, age at surgery, and initial lumbar BMD.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 138 - 138
1 May 2016
Yamaura K Muratsu H Tsubosaka M Annziki K Kudo K Minamino S Oshima T Matsumoto T Maruo A Miya H Kuroda R Kurosaka M
Full Access

Introduction

As the aging society progresses rapidly, the number of patients underwent total knee arthroplasty (TKA) is increasing especially for the elderly population. In Japan, the average age for TKA is around 75 years old. Japanese Orthopaedic Association indicated a new clinical entity of musculoskeletal ambulation disability symptom complex (MADS) to define the higher risk of fall and ambulatory disability in the elderly population in 2006. The diagnosing criteria for MADS consists of 2 simple performance tests. 3m timed up and go test (TUG) evaluates ambulatory function, and one leg standing time (ST) assesses balancing ability.

Objective

In this study, we analyzed the effect of TKA on the ambulatory function by quantitative measurement using 2 simple performances test: TUG and ST.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 74 - 74
1 May 2016
Nakano N Matsumoto T Muratsu H Takayama K Kuroda R Kurosaka M
Full Access

Introduction / Purpose

Many factors can influence postoperative knee flexion angle after total knee arthroplasty (TKA), and range of flexion is one of the most important clinical outcomes. Although many studies have reported that postoperative knee flexion is influenced by preoperative clinical conditions, the factors which affect postoperative knee flexion angle have not been fully elucidated. As appropriate soft-tissue balancing as well as accurate bony cuts and implantation has traditionally been the focus of TKA success, in this study, we tried to investigate the influence of intraoperative soft-tissue balance on postoperative knee flexion angle after cruciate-retaining (CR) TKA using a navigation system and offset-type tensor.

Methods

We retrospectively analyzed 55 patients (43 women, 12 men) with osteoarthritis who underwent TKA using the same mobile-bearing CR-type implant (e.motion; B. Braun Aesculap, Germany). The mean age at the time of surgery was 74.2 (SD 7.3) years. The exclusion criteria for this study included valgus deformity, severe bony defect requiring bone graft or augmentation, revision TKA, active knee joint infection, and bilateral TKA. Intraoperative soft-tissue balance parameters such as varus ligament balance and joint component gap were measured in the navigation system (Orthopilot 4.2; B. Braun Aesculap) while applying 40-lb joint distraction force at 0°, 10°, 30°, 60°, 90°, and 120° of knee flexion using an offset-type tensor with the patella reduced. Varus ligament balance was defined as the angle (degree, positive value in varus imbalance) between the seesaw and platform plates of the tensor that was obtained from the values displayed by the navigation system. To determine clinical outcome, we measured knee flexion angle using a goniometer with the patient in the supine position before and 2 years after surgery. Correlations between the soft-tissue parameters and postoperative knee flexion angle were analyzed using simple linear regression models. Pre- and postoperative knee flexion angle were also analyzed in the same manner.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 78 - 78
1 May 2016
Chinzei N Hayashi S Kanzaki N Hashimoto S Kihara S Haneda M Takeuchi K Kuroda R Kurosaka M
Full Access

Introduction

Failure of acetabular components has been reported to lead to large bone defects, which determine outcome and management after revision total hip arthroplasty (THA). Although Kerboull-type (KT) plate (KYOCERA Medical Corporation, Kyoto, Japan) has been used for compensating large bone loss, few studies have identified the critical risk factors for failure of revision THA using a KT plate. Therefore, the aim of this study is to evaluate the relationship between survival rates for radiological loosening and the results according to bone defect or type of graft.

Patients and methods

This study included patients underwent revision THA for aseptic loosening using cemented acetabular components with a KT plate between 2000 and 2012. Bone defects were filled with beta Tricalcium phosphate (TCP) granules between 2000 and 2003 and with Hydroxyapatite (HA) block between 2003 and 2009. Since 2009, we have used femoral head balk allografts. Hip function was evaluated by using the Japanese Orthopaedic Association (JOA) score and University of California, Los Angeles (UCLA) activity. Acetabular defects were classified according to the American Academy of Orthopedic Surgeons (AAOS) classification. The postoperative and final follow-up radiographs were compared to assess migration of the implant. Kaplan–Meier method for cumulative probabilities of radiographic failure rate, and the comparison of survivorship curves for various subgroups using the log-rank test were also evaluated. Logistic regression was performed to examine the association of such clinical factors as the age at the time of operation, body mass index, JOA score, UCLA activity score, and AAOS classification with radiographic failure. Odds ratios (ORs) and 95% CIs were calculated. Multivariate analysis was performed to adjust for potential confounders by clinical factors. Values of p < 0.05 were considered significant.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 50 - 50
1 Jan 2016
Takemori T Muratsu H Takeoka Y Matsumoto T Takashima Y Tsubosaka M Oshima T Maruo A Miya H Kuroda R Kurosaka M
Full Access

Objective

The goal of total knee arthroplasty (TKA) is to achieve a stable and well-aligned tibiofemoral and patello-femoral (PF) joint, aiming at long-term clinical patient satisfaction. The surgical principles of both cruciate retaining (CR) and posterior stabilized (PS) TKA are accurate osteotomy and proper soft tissue balancing. We have developed an offset-type tensor, and measured intra-operative soft tissue balance under more physiological joint conditions with femoral component in place and reduced PF joint.

In this study, we measured intra-operative soft tissue balance and assessed the post-operative knee joint stability quantitatively at one month, six months and one year after surgery, and compared these parameters between CR and PS TKAs.

Material and Method

Sixty patients with varus osteoarthritis of the knee underwent TKAs (30 CR TKAs: CR and 30 PS TKAs: PS). Mean varus deformity in standing position was 11.1 degrees in CR, and 12.6 degrees in PS. All TKAs were performed by a single surgeon with measured resection technique. The external rotation of posterior femoral condyle osteotomy was performed according to surgical epicondylar axis in pre-operative CT. We measured intra-operative soft tissue balance using an offset-type tensor with 40 lbs of joint distraction force at 0, 10, 30, 45, 60, 90, 120 and 135 degrees of flexion. The joint component gap (mm) and varus angle (degrees) were measured at each flexion angles.

One month, six months and one year after surgery, we evaluated the knee stability at extension by varus and valgus stress radiography using Telos (10kg) and at flexion by epicondylar view with 1.5kg weight at the ankle. We measured joint separation distance at medial as medial joint looseness (MJL) and at lateral as lateral joint looseness (LJL). Intra-operative measurements and post-operative joint stabilities were compared between CR and PS using unpaired t-test. The change of joint looseness in each group was analyzed using repeated measures ANOVA.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 62 - 62
1 Jan 2016
Ishida K Sasaki H Toda A Kodato K Matsumoto T Takayam K Kuroda R Kurosaka M Shibanuma N
Full Access

Background

Data on varus-valgus and rotational profiles can be obtained during navigated total knee arthroplasty (TKA). Such intraoperative kinematic data might provide instructive clinical information for refinement of surgical techniques, as well as information on the anticipated postoperative clinical outcomes. However, few studies have compared intraoperative kinematics and pre- and postoperative clinical outcomes; therefore, the clinical implications of intraoperative kinematics remain unclear.

In clinical practice, subjects with better femorotibial rotation in the flexed position often achieve favorable postoperative range of motion (ROM); however, no objective data have been reported to prove this clinical impression. Hence, the present study aimed to investigate the correlation between intraoperative rotation and pre- and postoperative flexion angles.

Materials and Methods

Twenty-six patients with varus osteoarthritis undergoing navigated posterior-stabilized TKA (Triathlon, Stryker, Mahwah, NJ) were enrolled in this study. An image-free navigation system (Stryker 4.0 image-free computer navigation system; Stryker) was used for the operation. Registration was performed after minimum soft tissue release and osteophyte removal. Then, maximum internal and external rotational stress was manually applied on the knee with maximum extension and 90° flexion by the same surgeon, and the rotational angles were recorded using the navigation system. After knee implantation, the same rotational stress was applied and the rotational angles were recorded again. In addition, ROM was measured before surgery and at 1 month after surgery. The correlation between the amount of pre- and postoperative tibial rotation and ROM was statistically evaluated.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 29 - 29
1 Jan 2016
Matsumoto T Takayama K Kawakami Y Ishida K Muratsu H Matsuzaki T Uefuji A Nakano N Matsushita T Kuroda R Kurosaka M
Full Access

Purpose

Surgeons sometimes encounter moderate or severe varus deformed osteoarthritic cases in which medial substantial release including semimembranosus is compelled to appropriately balance soft tissues in total knee arthroplasty (TKA). However, medial stability after TKA is important for acquisition of proper knee kinematics to lead to medial pivot motion during knee flexion. The purpose of the present study is to prove the hypothesis that step by step medial release, especially semimembranosus release, reduces medial stability in cruciate-retaining (CR) total knee arthroplasty (TKA).

Methods

Twenty CR TKAs were performed in patients with moderate varus-type osteoarthritis (10° < varus deformity <20°) using the tibia first technique guided by a navigation system (Orthopilot). During the process of medial release, knee kinematics including tibial internal rotation and anterior translation during knee flexion were assessed using the navigation system at 3 points; (1) after anterior cruciate ligament resection (pre-release), (2) medial tibial and femoral osteophyte removal and release of minimum deep layer of medial collateral ligament (minimum release) and (3) release of semimembranosus (semimembranosus release). In addition, the kinematics after all prostheses implantation (semimembranosus release group) were assessed and compared with those assessed in another 20 patients in which only minimum release was performed (minimum release group).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 65 - 65
1 Jan 2016
Muratsu H Takemori T Nagai K Matsumoto T Takashima Y Tsubosaka M Oshima T Maruo A Miya H Kuroda R Kurosaka M
Full Access

Introduction

Appropriate osteotomy alignment and soft tissue balance are essential for the success of total knee arthroplasty (TKA). The management of soft tissue balance still remains difficult and it is left much to the surgeon's subjective feel and experience.

We developed an offset type tensor system for TKA. This device enables objective soft tissue balance measurement with more physiological joint conditions with femoral trial component in place and patello-femoral (PF) joint reduced. We have reported femoral component placement decreased extension gap.

The purpose of the present study was to analyze the influence of femoral component size selection on the decrease of extension gap in posterior-stabilized (PS) TKA.

Material & Method

120 varus type osteoarthritic knees implanted with PS TKAs (NexGen LPS flex: Zimmer) were subjected to this study. All TKAs were performed using measured resection technique with anterior reference.

The femoral component size was evaluated intra-operatively using conventional femoral sizing jig. The selected femoral component size was expressed by the antero-posterior (AP) size increase (mm) comparing to that of original femoral condyles. Gap measurements were performed using a newly developed offset type tensor device applying 40lbs (178N) of joint distraction force. Firstly, conventional osteotomy gaps (mm) were measured at extension and flexion. Secondary, component gaps (mm) after femoral trial placement with PF joint reduced were evaluated at 0° and 90° of knee flexion.

To compare conventional osteotomy gaps and component gaps, estimated extension and flexion gaps were calculated by subtracting the femoral component thickness at extension (9mm) and flexion (11mm) from conventional osteotomy gaps respectively. The decrease of gap at extension and flexion were calculated with estimated gaps subtracted by component gaps. The simple linear regression analysis was used to evaluate the influence of selected femoral component size on the decrease of gap after femoral component placement.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 48 - 48
1 Jan 2016
Takayama K Matsumoto T Muratsu H Nakano N Shibanuma N Tei K Matsushita T Kuroda R Kurosaka M
Full Access

Purpose

The tibia first technique in unicompartmental knee arthroplasty (UKA) may have the advantage that surgeons can obtain a balanced flexion-extension gap. However, changes of the soft tissue tension during UKA has not been elucidated yet. The purpose of this study was to examine the correlation between the soft tissue tension before the femoral osteotomy and after the femoral component in place using the tensor in UKA.

Methods

Thirty UKAs for isolated medial compartmental osteoarthritis or idiopathic osteonecrosis were assessed. The mean age was 71.8±8.5 years old (range: 58–85), and the average coronal plane femorotibial angle (FTA) was 181.2±3.2 degree preoperatively. All the patients received a conventional medial Zimmer Unicompartmental High Flex Knee System (Zimmer Inc, Warsaw, Ind). The actual values of the proximal and posterior femoral osteotomy were calculated by adding the thickness of the bone saw blades to the thickness of the bony cut. Using a UKA tensor which designed to facilitate intra-operative soft tissue tension throughout the range of motion (ROM), the original gap before the femoral osteotomy, the component gap after the femoral osteotomy, and component placement were assessed under 20 lb distraction forces. (Figure 1)


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 78 - 78
1 Jan 2016
Nakano N Matsumoto T Muratsu H Matsushita T Takayama K Kawakami Y Nagai K Kuroda R Kurosaka M
Full Access

Patients planning to undergo total knee arthroplasty (TKA), especially in Asian and Middle Eastern countries, usually expect to be able to perform activities requiring knee flexion such as sitting cross-legged or kneeling with ease after the surgery. Postoperative range of motion (ROM) can be affected by multiple factors such as the patient's gender, age, preoperative ROM, diagnosis, the surgeon's technique, the pre- and post-operative rehabilitation program, and the design of the prosthesis. Among these, the choice of the prosthesis depends on the surgeon's preference. As a result, several trials and studies have been conducted to improve postoperative ROM by modifying prosthesis design. The present study aimed to examine the results of TKA with the NexGen LPS-Flex system (Zimmer, Warsaw, Indiana), which is one of several high-flexion total knee prostheses that were designed to achieve a wide ROM for osteoarthritis in the valgus knee. A total of 27 primary TKAs in 26 osteoarthritis patients with valgus knee deformities (femorotibial angle (FTA) ≤ 170°) were performed using the NexGen LPS-Flex fixed prosthesis between July 2003 and December 2011. The patients included 2 men (7.7%, 2 knees) and 24 women (92.3%, 25 knees) with a mean age of 72.6 years (range, 59 to 83 years) at the time of the surgery. The mean duration of follow-up after surgery was 50.1 months (range, 24 to 126 months). Knee Society Knee Score (KSKS), Knee Society Function Score (KSFS), maximum flexion angle, maximum extension angle, and radiological femorotibial angle (FTA) were evaluated pre- and post-operatively. The mean preoperative KSKS and KSFS were 42.6 points (SD 7.5) and 41.1 points (SD 8.6), respectively, which improved after surgery to 82.2 points (SD 8.2) and 80.9 points (SD 7.6), respectively (P < 0.01). The maximum flexion angle improved from 109.1° (SD 23.1) to 117.3° (SD 12.4) postoperatively, but it did not reach statistical significance (P = 0.097). The preoperative maximum extension angle improved from −9.7° (SD 10.8) to −3.6° (SD 4.9) postoperatively (p < 0.05). The mean radiological FTA was 166.4° (SD 4.2; range: 155° − 170°) preoperatively and 172.4° (SD 2.7; range: 168° − 178°) at the final follow-up, and the difference was statistically significant (P < 0.01). None of the patients had undergone revision surgery by the final follow-up. As a conclusion, the results of the present study showed that the use of NexGen LPS-Flex implant in TKA for knee osteoarthritis with valgus deformity produced a satisfactory improvement in the clinical and radiological outcomes. Further studies on the outcomes of other prosthesis are needed to determine whether the NexGen LPS-Flex implant is advantageous for osteoarthritis patients with valgus knees who undergo TKA, and further large-scale studies with longer term follow-up are necessary to verify our results.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 343 - 343
1 Dec 2013
Hayashi S Fujishiro T Hashimoto S Kanzaki N Nishiyama T Kurosaka M
Full Access

Introduction:

Implant dislocations are often caused by implant or bone impingement, and less impingement is critical to prevent dislocations. Several reports demonstrated that greater femoral offset delayed bony impingement and led to an improved range of motion (ROM) after THA. Therefore, an increase in the femoral offset may improve ROM and decrease implant dislocation. The aim of this study was to clarify the effect of the femoral offset in avoiding component or bony impingement after total hip arthroplasty (THA).

Methods:

Seventy-eight patients underwent THA with a Pinnacle cup and Summit stem (DePuy). Intraoperative kinematic analysis was performed with a navigation system, which was used to obtain intraoperative range of motion (ROM) measurements during trial insertion of stems of 2 different offset lengths with the same head size. Further, ROM was also measured after actual component insertion.