header advert
Results 1 - 2 of 2
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 72 - 72
1 May 2016
Nadorf J Kinkel S Kretzer J
Full Access

INTRODUCTION

Modular knee implants are used to manage large bone defects in revision total knee arthroplasty. These implants are confronted with varying fixation characteristics, changes in load transfer or stiffen the bone. In spite of their current clinical use, the influence of modularity on the biomechanical implant-bone behavior (e.g. implant fixation, flexibility, etc.) still is inadequately investigated.

Aim of this study is to analyze, if the modularity of a tibial implant could change the biomechanical implant fixation behavior and the implant-bone flexibility.

MATERIAL & METHODS

Nine different stem and sleeve combinations of the clinically used tibial revision system Sigma TC3 (DePuy) were compared, each implanted standardized with n=4 in a total of 36 synthetic tibial bones. Four additional un-implanted bones served as reference. Two different cyclic load situations were applied on the implant: 1. Axial torque of ±7Nm around the longitudinal stem axis to determine the rotational implant stability. 2. Varus-valgus-torque of ±3,5Nm to determine the bending behavior of the stem. A high precision optical 3D measurement system allowed simultaneous measuring of spatial micromotions of implant and bone. Based on these micromotions, relative motions at the implant-bone-interface and implant flexibility could be calculated.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 134 - 134
1 Dec 2013
Nadorf J Graage JD Kretzer JP Jakubowitz E Kinkel S
Full Access

Introduction:

Extensive bone defects of the proximal femur e.g. due to aseptic loosening might require the implantation of megaprostheses. In the literature high loosening rates of such megaprostheses have been reported. However, different fixation methods have been developed to achieve adequate implant stability, which is reflected by differing design characteristics of the commonly used implants. Yet, a biomechanical comparison of these designs has not been reported.

The aim of our study was to analyse potential differences in the biomechanical behaviour of three megaprostheses with different designs by measuring the primary rotational stability in vitro.

Methods:

Four different stem designs [Group A: Megasystem-C® (Link), Group B: MUTARS®(Implantcast), Group C: GMRS™ (Stryker) and Group D: Segmental System (Zimmer); see Fig. 1] were implanted into 16 Sawbones® after generating a segmental AAOS Typ 2 defect.

Using an established method to analyse the rotational stability, a cyclic axial torque of ± 7.0 Nm along the longitudinal stem axis was applied. Micromotions were measured at defined levels of the bone and the implant [Fig. 2]. The calculation of relative micromotions at the bone-implant interface allowed classifying the rotational implant stability.