Abstract
INTRODUCTION
Modular knee implants are used to manage large bone defects in revision total knee arthroplasty. These implants are confronted with varying fixation characteristics, changes in load transfer or stiffen the bone. In spite of their current clinical use, the influence of modularity on the biomechanical implant-bone behavior (e.g. implant fixation, flexibility, etc.) still is inadequately investigated.
Aim of this study is to analyze, if the modularity of a tibial implant could change the biomechanical implant fixation behavior and the implant-bone flexibility.
MATERIAL & METHODS
Nine different stem and sleeve combinations of the clinically used tibial revision system Sigma TC3 (DePuy) were compared, each implanted standardized with n=4 in a total of 36 synthetic tibial bones. Four additional un-implanted bones served as reference. Two different cyclic load situations were applied on the implant: 1. Axial torque of ±7Nm around the longitudinal stem axis to determine the rotational implant stability. 2. Varus-valgus-torque of ±3,5Nm to determine the bending behavior of the stem. A high precision optical 3D measurement system allowed simultaneous measuring of spatial micromotions of implant and bone. Based on these micromotions, relative motions at the implant-bone-interface and implant flexibility could be calculated.
RESULTS
Lowest relative micromotions were measured along the tibial base component and the sleeve; however, these motions varied depending on the implant construct used. Maximum relative micromotions were detected at the distal end of the implant for all groups, indicating a more proximal fixation of all modular combinations.
Regarding varus-valgus-torque measurement, all groups showed a deviant flexibility behavior compared to the reference group. When referred to the un-implanted bone, implants without stems revealed the highest flexibility, whereas implants with shorter stems had lowest flexibility.
DISCUSSION & CONCLUSION
All groups showed a more proximal fixation behavior; moreover, both extent and location of fixation could be influenced by varying the modular combination. Larger stems seemed to support a more distal fixation behavior, whereas the implant fixation moved proximal while extending the sleeve. Here the influence of the sleeve on fixation behavior seemed to be dominant compared to the influence of the stem.
Concerning varus-valgus-torque, a strong connection between the used stem and implant-bone flexibility seemed to exist. In addition, the influence of the sleeve on flexibility seemed to be rather low.
This study showed, that modularity can influence the biomechanical behavior of tibial implants. If these results can be transferred to other tibial implants still remains to be seen.