Advertisement for orthosearch.org.uk
Results 1 - 11 of 11
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 10 - 10
1 Apr 2019
Yoshioka T Okimoto N Kobayashi T Ikejiri Y Asano K Murata H Kawasaki M Majima T
Full Access

Soft tissue balance is important for good clinical outcome and good stability after TKA. Ligament balancer is one of the devices to measure the soft tissue balance. The objective of this study is to clarify the effect of the difference in the rotational position of the TKA balancer on medial and lateral soft tissue balance.

Materials and Methods

This study included with 50 knees of the 43 patients (6 males, 37 females) who had undergone TKA with ADLER GENUS system from March 2015 to January 2017. The mean age was 71.1±8.1 years. All patients were diagnosed with medial osteoarthritis of the knee. All implants was cruciate substituted type (CS type) and mobile bearing insert.

We developed a new ligament balancer that could be fixed to the tibia with keel and insert trial could be rotated on the paddle. We measured the medial and lateral soft tissue balance during TKA with the new balancer. The A-P position of the balancer was fixed on tibia in parallel with the Akagi line (A-P axis 0 group) and 20 degrees internal rotation (IR group) and 20 degrees external rotation (ER group). Soft tissue balance was measured in extension and 90 degrees of knee flexion on each rotational position.

Results

The mean angle of valgus and varus in IR group, 0 group and ER group were 4.6±2.2 degrees varus, 1.9±1.6 degrees varus and 0.4±2.4 degrees varus respectively in extension, and 5.5±3.0 degrees varus, 2.1±2.2 degrees varus and 0.7±3.2 degrees varus respectively in 90 degrees of knee flexion. There were significant differences between three groups in extension (p<0.0001) and flexion (p<0.0001). In other words, when the balancer was fixed on tibia with internal rotation against the Akagi line, the soft tissue balance indicated medial tightness. Conversely, when the balancer was fixed on tibia with external rotation against the Akagi line, the soft tissue balance showed lateral tightness.

The insert trial significantly rotated to opposite side against the position of balancer fixed.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 21 - 21
1 Apr 2018
Yamashita S Cho C Mori T Kawasaki M
Full Access

Introduction

Ultra-high molecular weight polyethylene (UHMWPE) is the sole polymeric material currently used for weight- bearing surfaces in total joint replacement. However, the wear of UHMWPE in knee and hip prostheses after total joint replacement is one of the major restriction factors on the longevity of these implants. In order to minimize the wear of UHMWPE and to improve the longevity of artificial joints, it is necessary to clarify the factors influencing the wear of UHMWPE. A number of studies have investigated the factors influencing the wear of UHMWPE acetabular cup liner in hip prosthesis. Most of these studies, however, have focused on the main articulating surfaces between the femoral head and the polyethylene liner.

Materials and Methods

In a previous study (Cho et al., 2016), the generations of cold flow into the screw holes in the metal acetabular cup were observed on the backside of the retrieved UHMWPE acetabular cup liners as shown in Figure 1. We focused on the screw holes in the metal acetabular cup (Figure 2) as a factor influencing the wear behavior of polyethylene liner in hip prosthesis. In this study, computer simulations of the generation of cold flow into the screw holes were performed using the finite element method (FEM) in order to investigate the influence of the screw holes in the metal acetabular cup on the mechanical state and wear behavior of polyethylene liner in hip prosthesis.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 20 - 20
1 Apr 2018
Eto T Cho C Mori T Kawasaki M
Full Access

Introduction

Ultra-high molecular weight polyethylene (UHMWPE) is the sole polymeric material currently used for weight- bearing surfaces in total joint replacement. However, the wear of UHMWPE in the human body after total joint replacement causes serious clinical and biomechanical reactions. Therefore, the wear phenomenon of UHMWPE is now recognized as one of the major factors restricting the longevity of artificial joints. In order to minimize the wear of UHMWPE and to improve the longevity of artificial joints, it is necessary to clarify the factors influencing the wear mechanism of UHMWPE.

Materials and Methods

In a previous study (Cho et al., 2016), it was found that roundness (out-of-roundness) of the retrieved UHMWPE acetabular cup liner [Figure 1(a)] had a tendency to increase with increasing roundness of the retrieved metal femoral head [Figure 1(b)]. It appears that roundness of the femoral head contributes to increase of wear of the polyethylene liners. We focused on the roundness of femoral head as a factor influencing the wear of polyethylene liner in hip prosthesis. In this study, further roundness measurements for 5 retrieved metal femoral heads were performed by using a coordinate measuring machine. The elasto-plastic contact analyses between femoral head and polyethylene liner using the finite element method (FEM) were also performed in order to investigate the influence of femoral head roundness on the mechanical state and wear of polyethylene liner in hip prosthesis.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 23 - 23
1 Apr 2018
Cho C Mori T Kawasaki M
Full Access

Introduction

Ultra-high molecular weight polyethylene (UHMWPE) is the sole polymeric material currently used for weight- bearing surfaces in total joint replacement. However, the wear of UHMWPE and the polyethylene wear debris generated in the human body after total joint replacement cause serious clinical and biomechanical reactions.

Therefore, the wear phenomenon of UHMWPE in total joint replacement is now recognized as one of the major factors restricting the longevity of these implants. In order to minimize the wear of UHMWPE and to improve the longevity of artificial joints, it is necessary to clarify the factors influencing the wear mechanism of UHMWPE.

Materials and Methods

The wear and/or failure characteristics of 33 retrieved UHMWPE acetabular cup liners of hip prostheses were examined in this study. The retrieved liners had an average in vivo duration of 193.8 months (75 to 290 months). Several examples of the retrieved liners are shown in Figure 1. The elasto-plastic contact analyses between metal femoral neck and polyethylene liner and between metal femoral head and polyethylene liner using the finite element method (FEM) were also performed in order to investigate the factors influencing the wear and/or failure mechanism of the polyethylene liner in hip prosthesis.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 22 - 22
1 Apr 2018
Baba S Cho C Mori T Kawasaki M
Full Access

Introduction

Wear phenomenon of ultra-high molecular weight polyethylene (UHMWPE) in hip and knee prostheses is one of the major restriction factors on the longevity of these implants. In retrieved hip prostheses with screw holes in the metal acetabular cup for fixation to the pelvis, the generation of cold flow into the screw holes is frequently observed on the backside of the UHMWPE acetabular cup liner. In most retrieved cases, the protruded areas of cold flow on the backside were located on the reverse side of the severely worn and deformed surface of the polyethylene liner. It would appear that the cold flow into screw holes contributes to increase of wear and damages of the polyethylene liner in hip prosthesis.

Methods

In a previous study (Cho et al., 2016), we pointed out the generation of cold flow into the screw holes on the backside of the retrieved UHMWPE acetabular cup liner as shown in Figure 1. The primary purpose of this study was to investigate the influence of the cold flow into the screw holes on the wear of the polyethylene liner in hip prosthesis. In this study, computer simulations of the generation of cold flow were performed using the finite element method (FEM) in order to propose the design criteria about the cold flow of the hip prosthesis for improving the wear resistance of the polyethylene liner. We especially focused on the influence of polyethylene thickness and contact surface conformity on the generation of cold flow into the screw hole.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 46 - 46
1 Mar 2017
Nagamine R Weijia C Todo M Osano K Takayama M Kawasaki M Kaneyama R
Full Access

Introduction

The hip-knee-ankle (HKA) angle between the mechanical axis of the femur (FM) and the mechanical axis of the tibia (TM) is the standard parameter to assess the coronal alignment of the lower extremity. TM is the line between the center of the tibial spines notch (Point T) and the center of the tibial plafond. However, this theory is based on the premise that TM coincides the anatomical axis of the tibia (TA). Fig.1a shows typical varus knee with medial shift of the tibial articular surface. In this case, TM does not coincide TA. Fig. 2 demonstrates the error of HKA angle when Point T locates medial to TA. Fig.2a shows normal alignment. Fig.2b shows varus alignment. Fig. 2c shows the tibia with medial shift of the tibial articular surface. The tibia has 7 degrees varus articular inclination in Fig.2b and 2c. However, HKA angle is 0 degree in Fig.2c. HKA angle underestimates varus deformity in knees with medial shift of the tibial articular surface. However, the degree of medial shift of the tibial articular surface is obscure. In this study, detailed anatomical configuration of the proximal tibia was evaluated. The effect of the value of HKA angle on the coronal alignment in TKA was then discussed.

Methods

This study consists of 117 knees. On the AP view radiograph of the tibia, three distance and two angle parameters were measured. Those were tibial articular surface width, distance between medial edge of the tibial articular surface and Point T, distance from TA to Point T. Angle between TM and TA, and the varus inclination angle of the tibial articular surface relative to the perpendicular line to TA.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 104 - 104
1 May 2016
Osano K Nagamine R Takayama M Kawasaki M
Full Access

Objective

The aim of this study was to evaluate the shape of patella relative to the femoral epicondylar axis and to find sex differences.

Materials and methods

Computed tomography (CT) images of 100 knees with tibiofemoral osteoarthritis in 100 patients were prospectively collected. All patients were diagnosed as varus-type osteoarthritis with no destructive patellar deformity.

Fifty patients were male and 50 female. The average male age was 70.8±14.6 (mean ± SD) years and the average female age was 73.3±6.7 years. Forty nine knees were right and 51 knees were left. The average height of males was 162.6±7.4 cm and that of females 149.6±5.7 cm. Males were significantly taller than females.

The CT scan was performed with 2mm-interval slices in the vertical plane to the long axis of femoral shaft. Every CT image was examined to determine the maximum distance between the medial and lateral femoral epicondyle (inter-epicondylar distance, IED) along the epicondylar axis. The maximum patellar width and thickness were also measured at the image which had these maximum distances, while patellar cartilage thickness in anteroposterior diameter was not measured in this study.

For evaluating the patellar size, each measured value was divided by IED and calculated each ratio. The ratio of patellar width to patellar thickness was also calculated. All parameters were compared between males and females.

Statistical software Statview ver.5.0 (SAS Institute Inc.) was used for all analyses with significance being set at the 5% level.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 144 - 144
1 May 2016
Yoshioka T Okimoto N Fuse Y Kawasaki M Mori T Majima T
Full Access

The objective of this study is to compare three dimensional (3D) postoperative motion between metal and ceramic bipolar hip hemiarthroplasty for femoral neck fracture.

Materials and Methods

This study was conducted with forty cases (20 cases of metal bipolar hemiarthroplasty (4 males, 16 females), 20 cases of ceramic bipolar hemiarthroplasty (2 males, 18 females)) from November 2012 to November 2014. Average age was 80.8±7.5 years for the metal bipolar group and 79.3±10.5 years for the ceramic bipolar group. We obtained motion pictures from standing position to maximum abduction in flexion by fluoroscopy then analyzed by 2D–3D image matching method. The motion range of the “Shell angle”, “Stem neck angle” and the “Stem neck and shell angle” has been compared between the metal bipolar group and the ceramic bipolar group (Fig. 1).

Results

Metal bipolar showed greater variability of the Stem neck angle and Shell angle than ceramic bipolar. Six of the twenty cases reached unilateral oscillation angle of 37 degrees in metal bipolar. In other words, 30% of metal bipolar group revealed neck-shell impingement. No case reached oscillation angle of 58 degrees in ceramic bipolar group. There was no significant difference between the metal bipolar group and the ceramic bipolar group with respect to the difference of minimum and maximum angle of Stem neck angle (movement range of the stem neck) and Shell angle (movement range of the bipolar cup). On the other hand, difference of minimum and maximum angle of the Stem neck and shell angle (movement range of the inner head) was significantly greater in the metal bipolar group than the ceramic bipolar group. Movement, range of bipolar shell was significantly greater than that of inner head in both groups (Table 1).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 446 - 446
1 Dec 2013
Nagamine R Weijia C Todo M Hirokawa S Kondo K Kawasaki M Osano K
Full Access

Purpose:

Differences in the sizes of femoral and tibial components between females and males, between osteoarthritis (OA) and rheumatoid arthritis (RA), and between measured bone resection and the gap control technique during TKA were assessed.

Method:

500 PS-TKAswith the Stryker NRG system in 408 cases were assessed. There were 83 male knees and 417 female knees, and 472 OA knees and 28 RA knees. This study was performed in Japan, and almost all OA knees had varus deformities. In each case, the sizes of the femoral and tibial components were measured on radiographs. The measured sizes represented those of the measured bone resection. TKA was performed by the gap control technique using a tensor/balancer with 30 inch-pounds expansion strength, and the sizes of the femoral and tibial components (used size) were recorded.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 367 - 367
1 Dec 2013
Kawasaki M Nagamine R Kondo K Weijia C Osano K
Full Access

Introduction

Following total knee arthroplasty (TKA), some patients show patella baja. It is possible that patella baja after posterior stabilized (PS)-type TKA causes the patellar clunk syndrome and limitation of flexion. The purpose of this study was to examine patellar height before and after PS-type TKA and identify the factors related to the change in patellar height.

Methods

Lateral X-ray films were taken at 90 degrees flexion before and after TKA using fluoroscopy in 87 patients (95 knees) (Fig. 1a, b). The components and surgical technique for TKA were Scorpio NRG (Stryker) and the modified gap control technique, respectively. The Insall-Salvati ratio (ISR) and the Labelle-Laurin method (LL) were measured as parameters of patellar height (Fig. 1c, d). Posterior condylar offset (PCO) (Fig. 1e), the distance from the anterior femoral line to the tibial tuberosity (TA), and the distance from the tibial tuberosity to the posterior condyle of the femur [TP; {TA-F (the length of the femoral condyle)}] (Fig. 1f) were examined as parameters that could be associated with the change in patellar height. All parameters were divided by patellar length to compensate for the expansion rate in each photograph. The mean LL/P, PCO/P, TA/P, and TP/P before TKA were set at 100%.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 92 - 92
1 Mar 2013
Kawasaki M
Full Access

Purpose

The purpose of this study is to inspect balance of the pelvis in the acetabular operation of total hip arthroplasty (THA) using direct anterior approach (DAA), and it is to examine precision of the acetabular socket setting.

Materials and Methods

We performed THA using DAA to 104 patients (114 hips) joints from August 2006 to April 2009 and identified for seventy five patients (eighty four hips) that imaging of the postoperative CT was possible. The orientation of acetabular sockets were performed using an alignment guide which assumed an operating table an axis from August 2006 to September 2008 (A group), and using an alignment guide which assumed a pelvis an axis from October 2008 to May 2009(B group). A group were thirty eight patients (forty four hips), and B group were twenty eight (thirty). There were two men and thirty six women in A group, and one man and twenty seven women in B group. The average age of both groups was 66 years old. The objective angle of the acetabular socket was performed as angle guide of abduction of 45° and anteversion of 20°. The orientation of the acetabular socket converted the angle of postoperative CT into radiographic angle, and measured it. For sixteen hips in B group, both angle guide was used, and there were measured a difference of two angle guide in the acetabular operation as movement of the pelvis. The examination item assumed it the mean values of angle for the acetabular socket in both groups, precision to set up the acetabular socket to planned orientation within ±5 °and a mean difference of two angle guides of sixteen hips in B group.