Hemi-arthroplasty (HA) as a treatment for fractured neck of femur has slightly increased since 2019 and remarkably after the COVID pandemic. The main drawback of the treatment is ongoing cartilage deterioration that may require revision to THR. This study assessed cartilage surface damage in hip HA by reproducing anatomical motion and loading conditions in a hip simulator.Abstract
BACKGROUND
OBJECTIVE
Hip joint biomechanics can be altered by abnormal morphology of the acetabulum and/or femur. This may affect load distribution and contact stresses on the articular surfaces, hence, leading to damage and degradation of the tissue. Experimental hip joint simulators have been used to assess tribology of total hip replacements and recently methods further developed to assess the natural hip joint mechanics. The aim of this study was to evaluate articular surfaces of human cadaveric joints following prolonged experimental simulation under a standard gait cycle. Four cadaveric male right hips (mean age = 62 years) were dissected, the joint disarticulated and capsule removed. The acetabulum and femoral head were mounted in an anatomical hip simulator (Simulation Solutions, UK). A simplified twin peak gait cycle (peak load of 3kN) was applied. Hips were submerged in Ringers solution (0.04% sodium azide) and testing conducted at 1 Hertz for 32 hours (115,200 cycles). Soft tissue degradation was recorded using photogrammetry at intervals throughout testing. All four hips were successfully tested. Prior to simulation, two samples exhibited articular surface degradation and one had a minor scalpel cut and a small area of cartilage delamination. The pre-simulation damage got slightly worse as the simulation continued but no new areas of damage were detected upon inspection. The samples without surface degradation, showed no damage during testing and the labral sealing effect was more obvious in these samples. The fact that no new areas of damage were detected after long simulations, indicates that the loading conditions and positioning of the sample were appropriate, so the simulation can be used as a control to compare mechanical degradation of the natural hip when provoked abnormal conditions or labral tissue repairs are simulated.
Abnormal joint mechanics have been proposed as adversely affecting natural hip joint tribology, whereby increased stress on the articular cartilage from abnormal loading leads to joint degeneration. The aim of this project was to assess the damage caused by different loading conditions on the articular surfaces of the porcine hip joint in an experimental simulator. Porcine hip joints were dissected and mounted in a single station hip simulator (SimSol, UK) and tested under loading scenarios (that corresponded to equivalent of different body mass index's’ (BMI) in humans), as follows:“Normal” (n=4), the loading cycle consisted of a simplified gait cycle based on a scaled version of a simplified twin-peak human gait cycle, the peak load was 900N (representative of a healthy BMI). Representative of an “Overweight” BMI (n=3), as the normal cycle with a peak load of 1,130N Representative of an “Obese” BMI (n=1), as the normal cycle with a peak load of 1,340N Tests were conducted at 1Hz for 14,400 cycles in Ringers solution; photogrammetry was used to characterise the appearance of the cartilage and labrum pre, during and post simulation. the appearance and location of damage was recorded.Abstract
OBJECTIVES
METHODS
The treatment of scapholunate (SL) ligament injuries is addressed by surgical procedures to stabilize the carpal joint. Open techniques include bone-ligament-bone transfers, tenodesis, partial fusions and carpectomies. Innovative procedures using wrist arthroscopy, offer minimally invasive fixation without full exposure of carpal bones; however, the success of the technique and its impact on the reduction on the range of carpal movement is as yet not well known. In this work, the performance of Corella tenodesis technique to repair the SL ligament is evaluated for a wrist type II by numerical methods. Human wrist can be classified based on the lunate morphology: type I for lunate that articulates with radius, scaphoid, capitate and triquetrum, and type II which has an extra surface to articulate with the hamate. A finite element model was constructed from CT-scan images, the model includes cortical and trabecular bones, articular cartilage and ligaments. Three scenarios were simulated representing healthy wrist, SL ligament sectioning and the Corella technique. The performance of the technique was assessed by measure the SL gap in dorsal and volar side as well as the SL angle to be compared to cadaveric studies. In intact position, the SL gap and the SL angle predicted by the numerical model is 2.8 mm and 44.8º, these values are consistent to the standard values reported in cadaveric experiments (2.0 ± 0.8 mm for SL gap and 45.8 ± 9.7 for SL angle). Virtual surgeries may help to understand and evaluate the performance of the techniques at clinical application.