Advertisement for orthosearch.org.uk
Results 1 - 20 of 28
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 9 - 9
1 Feb 2021
Soltanihafshejani N Bitter T Janssen D Verdonschot N
Full Access

Introduction

The fixation of press-fit orthopaedic devices depends on the mechanical properties of the bone that is in contact with the implants. During the press-fit implantation, bone is compacted and permanently deformed, finally resulting in the mechanical interlock between implant and bone. For the development and design of new devices, it is imperative to understand these non-linear interactions. One way to investigate primary fixation is by using computational models based on Finite Element (FE) analysis. However, for a successful simulation, a proper material model is necessary that accurately captures the non-linear response of the bone. In the current study, we combined experimental testing with FE modeling to establish a Crushable Foam model (CFM) to represent the non-linear bone biomechanics that influences implant fixation.

Methods

Mechanical testing of human tibial trabecular bone was done under uniaxial and confined compression configurations. We examined 62 human trabecular bone samples taken from 8 different cadaveric tibiae to obtain all the required parameters defining the CFM, dependent on local bone mineral density (BMD). The derived constitutive rule was subsequently applied using an in-house subroutine to the FE models of the bone specimens, to compare the model predictions against the experimental results.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 50 - 50
1 Feb 2021
Sanchez E Schilling C Grupp T Giurea A Verdonschot N Janssen D
Full Access

Introduction

Cementless total knee arthroplasty (TKA) implants use an interference fit to achieve fixation, which depends on the difference between the inner dimensions of the implant and outer dimensions of the bone. However, the most optimal interference fit is still unclear. A higher interference fit could lead to a superior fixation, but it could also cause bone abrasion and permanent deformation during implantation. Therefore, this study aims to investigate the effect of increasing the interference fit from 350 µm to 700 µm on the primary stability of cementless tibial implants by measuring micromotions and gaps at the bone-implant interface when subjected to two loading conditions.

Methods

Two cementless e.motion® tibial components (Total Knee System, B. Braun) with different interference fit and surface coating were implanted in six pairs of relatively young human cadaver tibias (47–60 years). The Orthoload peak loads of gait (1960N) and squat (1935N) were applied to the specimens with a custom made load applicator (Figure 1A). The micromotions (shear displacement) and opening/closing gaps (normal displacement) were measured with Digital Image Correlation (DIC) in 6 different regions of interest (ROIs - Figure 1B). Two General Linear Mixed Models (GLMMs) were created with micromotions and interfacial gaps as dependent variables, bone quality, loading conditions, ROIs, and interference fit implants as independent variables, and the cadaver specimens as subject variables.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 52 - 52
1 Feb 2020
Sadhwani S Picache D Janssen D de Ruiter L Rankin K Briscoe A Verdonschot N Shah A
Full Access

Introduction

Polyetheretherketone (PEEK) has been proposed as an implant material for femoral total knee arthroplasty (TKA) components. Potential clinical advantages of PEEK over standard cobalt chrome alloys include modulus of elasticity and subsequently reduced stress shielding potentially eliminating osteolysis, thermal conduction properties allowing for a more natural soft tissue environment, and reduced weight enabling quicker quadriceps recovery. Manufacturing advantages include reduced manufacturing and sterilization time, lower cost, and improved quality control. Currently, no PEEK TKA implants exist on the market. Therefore, evaluation of mechanical properties in a pre-clinical phase is required to minimize patient risk.

The objectives of this study include evaluation of implant fixation and determination of the potential for reduced stress shielding using the PEEK femoral TKA component.

Methods and Materials

Experimental and computational analysis was performed to evaluate the biomechanical response of the femoral component (Freedom Knee, Maxx Orthopedics Inc., Plymouth Meeting, PA; Figure 1).

Fixation strength of CoCr and PEEK components was evaluated in pull-off tests of cemented femoral components on cellular polyurethane foam blocks (Sawbones, Vashon Island, WA). Subsequent testing investigated the cemented fixation using cadaveric distal femurs. The reconstructions were subjected to 500,000 cycles of the peak load occurring during a standardized gait cycle (ISO 14243-1). The change from CoCr to PEEK on implant fixation was studied through computational analysis of stress distributions in the cement, implant, and the cement-implant interface. Reconstructions were analyzed when subjected to standardized gait and demanding squat loads.

To investigate potentially reduced stress shielding when using a PEEK component, paired cadaveric femurs were used to measure local bone strains using digital image correlation (DIC). First, standardized gait load was applied, then the left and right femurs were implanted with CoCr and PEEK components, respectively, and subjected to the same load. To verify the validity of the computational methodology, the intact and reconstructed femurs were replicated in FEA models, based on CT scans.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 81 - 81
1 Apr 2019
Bitter T Marra M Khan I Marriott T Lovelady E Verdonschot N Janssen D
Full Access

Introduction

Fretting corrosion at the taper interface of modular connections can be studied using Finite Element (FE) analyses. However, the loading conditions in FE studies are often simplified, or based on generic activity patterns. Using musculoskeletal modeling, subject-specific muscle and joint forces can be calculated, which can then be applied to a FE model for wear predictions. The objective of the current study was to investigate the effect of incorporating more detailed activity patterns on fretting simulations of modular connections.

Methods

Using a six-camera motion capture system, synchronized force plates, and 45 optical markers placed on 6 different subjects, data was recorded for three different activities: walking at a comfortable speed, chair rise, and stair climbing.

Musculoskeletal models, using the Twente Lower Extremity Model 2.0 implemented in the AnyBody modeling System™ (AnyBody Technology A/S, Aalborg, Denmark; figure1), were used to determine the hip joint forces. Hip forces for the subject with the lowest and highest peak force, as well as averaged hip forces were then applied to an FE model of a modular taper connection (Biomet Type-1 taper with a Ti6Al4V Magnum +9 mm adaptor; Figure 2). During the FE simulations, the taper geometry was updated iteratively to account for material removal due to wear. The wear depth was calculated based on Archard's Law, using contact pressures, micromotions, and a wear factor, which was determined from accelerated fretting experiments.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 93 - 93
1 Apr 2019
Anijs T Janssen D Verdonschot N
Full Access

Introduction

Aseptic loosening is the main reason for total knee arthroplasty (TKA) failure, responsible for more than 25% of the revision procedures, with most of the problems occurring with the tibial component. While early loosening can be attributed to failure of primary fixation, late implant loosening is associated with loss of fixation secondary to bone resorption due to altered physiological load transfer to the tibial bone. Several attempts have been made to investigate these changes in bone load transfer in biomechanical simulations and bone remodeling analyses, which can be useful to provide information on the effect of patient, surgery, or design-related factors. On the other hand, these factors have also been investigated in clinical studies of radiographic changes of bone density following TKA. In this study we made an overview of the knowledge obtained from these clinical studies, which can be used to inform clinical decision making and implant design choices.

Methods

A literature search was performed to identify clinical follow-up studies that monitored peri-prosthetic bone changes following TKA. Within these studies, effects of the following parameters on bone density changes were investigated: post-operative time, region of interest, alignment, body weight, systemic osteoporosis, implant design and cementation.

Moreover, we investigated the effect of bone density loss on implant survival. Results

A total of 19 studies was included in this overview, with a number of included patients ranging from 12 to 7,760. Most studies used DEXA (n=16), while a few studies performed analyses on calibrated digital radiographs (n=2), or computed tomography (n=1). Postoperative follow-up varied from 9 months to 10 years.

Studies consistently report the largest bone density reduction within the first postoperative year. Bone loss is mainly seen in the medial region. This has been attributed to the change in alignment following surgery, during which often the pre-operative varus knee is corrected to a more physiological alignment, resulting in a load shift towards the lateral compartment. Measurements in unoperated contralateral legs were performed in 3 cases, and two studies performed standardized DEXA measurements to provide information on systemic osteoporosis. While on the short term no changes were observed, significant negative correlations have been found between severity of osteoporosis and peri-prosthetic bone density. No clear effects of bodyweight and cementation on bone loss have been identified. Although some studies do find differences between implant types, the variation in the data makes it difficult to draw general conclusions from these findings.

Several studies reported no effect of bone loss on implant migration. In another study, a medial collapse was associated with a medial increase in density, suggesting that altered loading and increased stresses are responsible for both bone formation and the overload leading to collapse.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 125 - 125
1 Apr 2019
Sanchez E Schilling C Grupp TM Verdonschot N Janssen D
Full Access

Introduction

Although cementless press-fit femoral total knee arthroplasty (TKA) components are routinely used in clinical practice, the effect of the interference fit on primary stability is still not well understood. Intuitively, one would expect that a thicker coating and a higher surface roughness lead to a superior fixation. However, during implant insertion, a thicker coating can introduce more damage to the underlying bone, which could adversely influence the primary fixation. Therefore, in the current study, the effect of coating thickness and roughness on primary stability was investigated by measuring the micromotions at the bone-implant interface with experimental testing.

Methods

A previous experimental set-up was used to test 6 pairs of human cadaveric femurs (47–60 years, 5 females) implanted with two femoral component designs with either the standard e.motion (Total Knee System, B. Braun, Germany) interference fit of 350 µm (right femurs) or a novel, thicker interference fit of 700 µm (left femurs). The specimens were placed in a MTS machine (Figure 1) and subjected to the peak loads of normal gait (1960N) and squat (1935N), based on the Orthoload dataset for Average 75.

Varus/valgus moments were incorporated by applying the loads at an offset relative to the center of the implants, leading to a physiological mediolateral load distribution. Under these loads, micromotions at the implant-bone interface were measured using Digital Image Correlation (DIC) at different regions of interest (ROIs – Figure 1). In addition, DIC was used to measure opening and closing of the implant-bone interface in the same ROIs.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 14 - 14
1 Apr 2018
Bitter T Khan I Marriott T Lovelady E Verdonschot N Janssen D
Full Access

Introduction

Fretting corrosion of the modular taper junction in total hip arthroplasty has been studied in several finite element (FE) studies. Manufacturing tolerances can result in a mismatch between the femoral head and stem, which can influence the taper mechanics leading to possibly more wear. Using FE models the effect of these manufacturing tolerances on the amount of volumetric wear can be studied. The removal of material in the FE model was validated against experiments simulating the clinical fretting wear process, subsequently the mismatch and assembly force were varied to study the effect on the volumetric wear.

Methods

An FE model was developed in which the geometry can be updated to account for material removal due to wear. In this model the geometry was updated based on Archard's Law, using contact pressures, micromotions and a wear factor, which was determined based on accelerated fretting experiments. The linear wear was calculated using H=k*p*S. Where H is the linear wear depth in mm, k is a wear factor (mm3/Nmm), p is the contact pressure (MPa) and S is the sliding distance (mm). 10 million cycles were simulated using 50 virtual steps. Using this scaling and the measured volumetric wear from the experiments a wear factor of 2.7*10−5 was applied.

Based on general manufacturing tolerances the resulting mismatch in taper angles were determined to be ± 1.26°. Using this mismatch a tip fit (figure 1a) and base fit (Figure 1b) model were created. In combination with a perfect fit, meaning no mismatch, and two different assembly forces of 4 kN and 15 kN, 6 different situations were studied.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 78 - 78
1 Apr 2018
Srinivasan P Miller M Verdonschot N Mann K Janssen D
Full Access

INTRODUCTION

Mechanical overloading of the knee can occur during activities of daily living such as stair climbing, jogging, etc. In this finite element study we aim to investigate which parameters could detrimentally influence peri-implant bone in the tibial reconstructed knee. Bone quality and patient variables are potential factors influencing knee overloading (Zimmerman 2016).

METHODS

Finite element (FE) models of post-mortem retrieved tibial specimens (n=7) from a previous study (Zimmerman 2016) were created using image segmentation (Mimics Materialise v14) of CT scan data (0.6 mm voxel resolution). Tibial tray and polyethylene inserts were recreated from CT data and measurements of the specimens (Solidworks 2015). Specimens with varying implant geometry (keel/pegged) were chosen for this study. A cohesive layer between bone and cement was included to simulate the behavior of the bone–cement interface using experimentally obtained values. The FE models predict plasticity of bone according to Keyak (2005). Models were loaded to 10 body weight (BW) and then reduced to 1 BW to mimic experimental measurements. Axial FE bone strains at 1 BW were compared with experimental Digital Image Correlation (DIC) bone strains on cut sections of the specimens.

After validation of the FE models using strain data, models were rotated and translated to the coordinate system defined in Bergmann (2014). Four loading cases were chosen – walking, descending stairs, sitting down and jogging. Element strains were written to file for post-processing. The bone in all FE models was divided into regions of equal thickness (10 mm) for comparison of strains.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 40 - 40
1 Feb 2017
Berahmani S Hendriks M Janssen D Verdonschot N
Full Access

The primary stability of an uncemented femoral total knee replacement component is provided by press-fit forces at the bone-implant interface. This press-fit is achieved by resecting the bone slightly larger than the inner dimensions of the implant, resulting in a so-called interference fit. Previous animal studies have shown that an adequate primary stability is required to minimize micromotions at the bone-implant interface to achieve bone-ingrowth, which provides the secondary (long-term) fixation. It is assumed that during implantation a combination of elastic and plastic deformation and abrasion of the bone will occur, but little is known about what happens at the bone-implant interface and how much interference fit eventually is achieved. Purpose of this study was therefore to assess the actual and effective interference fit and the amount of bone damage during implantation of an uncemented femoral knee component.

In this study, five cadaveric distal femora were prepared and femoral knee components were implanted by an experienced surgeon. Micro-CT scans and conventional CT-scans were obtained pre- and post-implantation for geometrical measurements and to measure bone mineral density. In addition, the position of the implant with respect to the bone was determined by optical scanning of the reconstructions (Figure.1). By measuring the differences in surface geometry, assessments were made of the cutting error, the actual interference fit, the amount of bone damage, and the effective interference fit.

Our analysis showed an average cutting error of 0.67± 0.17 mm, which pointed mostly towards bone under-resections. We found an average actual AP interference fit of 1.48± 0.27 mm, which was close to the nominal value of 1.5 mm. We observed combinations of bone damage and elastic deformation in all bone specimens (Figure. 2), which showed a trend to be related with bone density. Higher bone density tended to lead to lower bone damage and higher elastic deformation (Figure. 3). The results of the current study indicate different factors that interact while implanting an uncemented femoral knee component. This knowledge can be used to fine-tune design criteria of femoral components and obtain adequate primary stability for all patients in a more predictable way.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 139 - 139
1 Feb 2017
Marra M Heesterbeek P van de Groes S Janssen D Koopman B Wymenga A Verdonschot N
Full Access

Introduction

Tibial slope was shown to majorly affect the outcomes of Total Knee Arthroplasty (TKA). More slope of the tibial component could help releasing a too tight flexion gap in cruciate-retaining (CR) TKA and is generally associated with a wider range of post-operative knee flexion. However, an excessive tibial slope could jeopardize the knee stability in flexion. The mechanism by which tibial slope affects the function of CR-TKA is not well understood. Moreover, it is not known whether the tibial bone resection should be performed by referencing the anterior cortex (AC) of the tibia or the center of the tibial plateau (CP) and whether the choice of either technique plays a role. The aim of this study was to investigate the effect of tibial slope on the position of tibiofemoral (TF) contact point, knee ligament forces, quadriceps muscle forces, and TF and patellofemoral (PF) joint contact forces during squat activity in CR-TKA.

Methods

A previously validated musculoskeletal model of CR-TKA was used to simulate a squat activity performed by a 86-year-old male subject wearing an instrumented prosthesis [1,2]. Marker data over four consecutive repetitions of a squat motion were tracked using a motion optimization algorithm. Muscle and joint forces and moments were calculated from an inverse-dynamic analysis, coupled with Force-Dependent Kinematics (FDK) to solve knee kinematics, ligament and contact forces simultaneously. The tibial slope in the postoperative case was 0 degree and constituted the reference case for our simulations. In addition, eight additional cases were simulated with −3, +3, +6, +9 degrees of tibial slope, four of them simulating an AC referencing technique and four a CP technique.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 46 - 46
1 Feb 2017
Bitter T Janssen D Schreurs B Marriott T Lovelady E Khan I Verdonschot N
Full Access

Introduction

Fretting corrosion of the modular taper junction in total hip arthroplasty has been studied in several finite element (FE) investigations. In FE analyses, different parameters can be varied to study micromotions and contact pressures at the taper interface. However, to truly study taper wear, the simulation of micromotions and contact pressures in non-adaptive FE models is insufficient, as over time these can change due to interfacial changes caused by the wear process.

In this study we developed an FE approach in which material removal during the wear process was simulated by adaptations to the taper geometry. The removal of material was validated against experiments simulating the clinical fretting wear process.

Method

Experimental test: An accelerated fretting screening test was developed that consistently reproduced fretting wear features observed in retrievals. Biomet Type-1 (4°) tapers and +9 mm offset adaptors were assembled with a 4 kN force (N=3). A custom head fixture was used to create an increased offset and torque. The stems were potted in accordance with ISO 7206–6:2013. The set-up was submerged in a 37°C PBS solution with a pH adjusted to 3 using HCL and NaCl concentration of 90gl−1. The components were cyclically loaded between 0.4 – 4 kN for 10 million cycles. After completion, the volumetric and linear wear was measured using a Talyrond-585 roundness measurement machine.

FE model: This was created to match the experimental set up (Figure 1). Taper geometry and experimental material data were obtained from the manufacturer (Zimmer Biomet). The coefficient of friction of the studied combination of components was based on previous experiments (Bitter, 2016). After each change in load the geometry was updated by moving nodes inwards perpendicular to the taper surface. Archard's Law (Archard, 1953) was used to calculate the wear with the following equation: H=k*p*S. Where H is the linear wear depth in mm, k is a wear factor (mm³/Nmm), p is the contact pressure (MPa) and S is the sliding distance (mm). The 10 million experimental cycles were simulated using a range of 5 to 200 computational cycles. For this purpose, the wear factor (k) was scaled for each simulation to match the volumetric wear found in the experiments.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 37 - 37
1 May 2016
Berahmani S Janssen D Wolfson D Hendriks M Wright A Malefijt M Verdonschot N
Full Access

To achieve a long-lasting fixation of uncemented femoral knee implants, an adequate primary stability is required. Several factors, including the applied load, bone quality, surgical preparation, and implant characteristics affect the primary fixation. Recently, novel Attune® cementless femoral component has been proposed by DePuy Synthes (Warsaw, IN, USA). We aimed to compare the primary stability of this novel high-flex design against the conventional LCS® under different loading conditions (gait, deep knee bend (DKB), and high-flex loading), while accounting for the effect of bone quality and cut accuracy.

Six pairs of femora were prepared following the normal surgical procedure. Calibrated CT-scans and 3D-optical scans of the bones were obtained to measure bone mineral density (BMD) and bone cut accuracy, respectively. After implantation of the appropriate size implants (Left legs: Attune; right: LCS), a black-and-white speckle pattern was applied to each specimen (Fig.1B). The micromotion measurement was repeated three times in nine regions of interest (ROIs): the medial and lateral condyles from the posterior view; anterior, distal, and posterior regions from the medial and lateral views; the proximal tip of the anterior flange. The reconstructions were subjected to a gait load and a portion (around 50%) of the peak force of a DKB to prevent fracture of the proximal femur (Fig. 1A and Table. 1). The loads were derived from the Orthoload database using implant-specific inverse dynamics [1]. In addition, a sequence of DIC-images synchronized with the applied load was captured to find the relationship between micromotion and load. Afterwards, implants were pushed-off simulating 150° of flexion, while force-displacement graph was recorded.

BMD and bone cut accuracy were not significantly different between the groups. Under both loading conditions, Attune had a significantly lower micromotion (Table. 1). Cut accuracy was not a significant factor, and BMD was only significant for the comparison under the gait loading (not under DKB conditions). High-flex push-off force was not significantly different. However, Attune required a significantly higher load to reach a micromotion of 50 or 150 µm during the push-off test. Different relations between micromotion and applied load, depending on the loading configuration and implant design, were found (Fig. 2).

Our study has shown a clearly lower range of micromotion for the novel implant. Potential factors to explain the higher micromotion of LCS are parallel anterior and posterior bone cuts in the LCS versus the tapered bone cuts of the Attune. In addition, LCS has a less surface area in contact with bone due to the presence of a rim at the borders of the implant, which may have resulted in lower pre-stresses at the bone-implant interface.

Taking to account, the promising clinical outcome of LCS and also the lower range of micromotion of Attune, we suggest that the Attune has a potential to be at least as successful as the LCS system from a bone fixation point of view. However, further clinical evaluation of the Attune is necessary to assess its performance on the longer term.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 26 - 26
1 May 2016
Hanzlik J Day J Kurtz S Verdonschot N Janssen D
Full Access

Introduction

Initial large-scale clinical studies of porous tantalum implants have been generally promising with well-fixed implants and few cases of loosening [1–3]. An initial retrieval study suggests increased bone ingrowth in a modular tibial tray design compared to the monoblock design [4]. Since micromotion at the bone-implant interface is known to influence bone ingrowth [5], the goal of this study was to determine the effect of implant design, bone quality and activity type on micromotion at the bone-implant interface, through FE modeling.

Patients & Methods

Our case-specific FE model of bone was created from CT data (68 year-old female, right tibia, Fig-1). Isotropic properties of cortical and trabecular bone were derived from the calibrated CT data. Modular and monoblock porous tantalum tibial implants were virtually placed in the tibia following surgical guidelines. All models parts were 3D meshed with 4-noded tetrahedral elements (MSC.MARC-Mentat 2013, MSC Software Corporation, USA). Frictional contact was applied to the bone-tantalum interface (µ=0.88) and UHWMPE-Femoral condyle interface (µ=0.05) with all other interfaces bonded. Loading was applied to simulate walking, standing up and descending stairs. For each activity, a full load cycle [6] was applied to the femoral condyles in incremental steps. The direction and magnitude of micromotions were calculated by tracking the motions of nodes of the bone, projected onto the tibial tray. Micromotions were calculated parallel to the implant surface (shear), and perpendicularly (tensile). We report the maximum (resultant) micromotion that occurred during a cycle of each activity. The bone properties were varied to represent a range in BMD (−30%BMD, Norm, +30%BMD). We compared design type, bone quality and activity type considering micromotion below 40 µm to be favorable for bone ingrowth [5].


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 44 - 44
1 May 2016
Bitter T Janssen D Schreurs B Marriott T Khan I Verdonschot N
Full Access

Introduction

Fretting corrosion at the taper interface has been implicated as a possible cause of implant failure. Using in-vitro testing, fretting wear observed at tapers of retrieved implants may be reproduced (Marriott, EORS-2014). In order to reduce time and cost associated with experimental testing, a validated finite element method (FE) can be employed to study the mechanics at the taper. In this study we compared experimental and representative FE simulations of an accelerated fretting test set-up. Comparison was made by between the FE wear score and volumetric material loss from the testing.

Methods

Experimental test set-up: An accelerated wear test was developed that consistently reproduced fretting wear features observed in retrievals. Biomet stems with smooth 4° Type-1 tapers were combined with Ti6Al4V Magnum +9 mm adaptors using a 2 or 15 kN assembly force. The head was replaced with a custom head fixture to increase the offset and apply a torque at the taper interface. The stems were potted according to ISO 7206-6:2013. The set-up was submerged in a test medium containing PBS and 90gl-1 NaCl. The solution was pH adjusted to 3 using HCl and maintained at 37°C throughout the tests. For each assembly case, n=3 tests were cyclically loaded between 0.4–4 kN for 10 Million cycles. Volumetric wear measurements were performed using a Talyrond-365 roundness measurement machine. The FE model was created to replicate the experimental set up. Geometries and experimental material data were obtained from the manufacturer (Biomet). The same assembly forces of 2 and 15 kN were applied, and the same head fixture was used for similar offset and loading conditions. The 4 kN load was applied at the same angles in accordance with ISO 7206-6:2013. Micromotions and contact pressures were calculated, and based on these a wear score was determined by summation over all contact points.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 78 - 78
1 May 2016
Tomaszewski P Eijkenboom J Berahmani S Janssen D Verdonschot N
Full Access

INTRODUCTION

Total hip arthroplasty (THA) is a very successful orthopaedic treatment with 15 years implant survival reaching 95%, but decreasing age and increasing life expectancy of THA patients ask for much longer lasting solutions. Shorter and more flexible cementless stems are of high interest as these allow to maintain maximum bone stock and reduce adverse long-term bone remodeling.1 However, decreasing stem length and reducing implant stiffness might compromise the initial stability by excessively increasing interfacial stresses. In general, a good balance between implant stability and reduced stress shielding must be provided to obtain durable THA reconstruction.2

This finite element (FE) study aimed to evaluate primary stability and bone remodeling of a new design of short hip implant with solid and U-shaped cross-section.

MATERIALS AND METHODS

The long tapered Quadra-H stem and the short SMS implants (Medacta International, Castel San Pietro, Switzerland) were compared in this study (Figure 1). A FE model of a femur was based on calibrated CT data of an 81 year-old male (osteopenic bone quality). Both titanium alloy implants were assigned an elastic modulus of 105 GPa and the Poisson's ratios were set to 0.3. Initial stability simulations included the hip joint force and all muscle loads during a full cycle of normal walking as calculated in AnyBody software (Anybody Technology AS, Denmark), whereas the remodeling simulation used the peak loads from normal walking and stair climbing activities. Initial stability results are presented as micromotions on the implant surface with a threshold of 40 µm.3 Bone remodeling outcomes are represented in a form of simulated Dual X-ray Absorptiometry (DEXA) scans and the quantitative bone mineral density (BMD) changes in 7 periprosthetic zones.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 106 - 106
1 May 2016
de Ruiter L Janssen D Briscoe A Verdonschot N
Full Access

Introduction

A previous computational study on an all-polymer PEEK-on-UHMWPE total knee replacement implant showed improved periprosthetic bone loading, compared to a conventional implant [1]. That study used a simulated gait cycle to determine distal loading, but a patella was not included. Substantial distal decrease of bone remodeling stimulus was found, in accordance with previous reports [2], but it was not consistent with other clinical and post-mortem DEXA results, which found the largest loss of bone stock in the anterior region [3,4]. As patellofemoral forces are relatively low during gait compared to squatting, we simulated a deep squat, expecting that a high-demand activity would provide similar indications of bone loss as literature [3,4]. Consequently, we applied both high tibiofemoral and patellofemoral loads, to provide more insight in the potential benefits of a new PEEK-Optima® femoral component on periprosthetic bone stock.

Methods

We adopted a deep squat finite element model from Zelle et al. and included quasi-static deep flexion and load sharing at the posterior condyles [6]. A new implant design was inserted, with three variations in material properties: intact, CoCr and PEEK. The stiffness of the femoral elements was mapped from CT and applied to either the cut femur only (CoCr and PEEK) or the entire femoral construct (intact). The strain energy density (SED) was evaluated in the periprosthetic region as a measure for bone remodeling stimulus. To examine the effects of the entire exercise, SED values were integrated over all increments.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 43 - 43
1 Jan 2016
Berahmani S Janssen D Wolfson D De Waal Malefijt M Verdonschot N
Full Access

A durable biological fixation between implant and bone depends largely on the micro-motions [Pilliar et al., 1986]. Finite element analysis (FEA) is a numerical tool to calculate micro-motions during physiological loading. However, micromotions can be simulated and calculated in various ways. Generally, only a single peak force of an activity is applied, but it is also possible to apply discretized loads occurring during a continuous activity, offering the opportunity to analyze incremental micro-motions as well. Moreover, micro-motions are affected by the initial press-fit. We therefore aimed to evaluate the effect of different loading conditions and calculation methods on the micro-motions of an uncemented femoral knee component, while varying the interference-fit.

We created an FE model of a distal femur based on calibrated CT-scans. A Sigma® Cruciate-Retaining Porocoat® (DePuy Synthes, Leeds, UK) was placed following the surgical instructions. A range of interference-fits (0–100 µm) was applied, while other contact parameters were kept unchanged. Micro-motions were calculated by tracking the projection of implant nodes onto the bone surface. We defined three different micro-motions measures: micro-motions between consecutive increments of a full loading cycle (incremental), micro-motions for each increment relative to the initial position (reference), and the largest distance between projected displacements, occurring during a discretized full cycle (resulting) (Fig. 1A). Four consecutive cycles of normal gait and squat movements were applied, in different configurations. In the first configuration, incremental tibiofemoral and patellofemoral contact forces were applied, which were derived from Orthoload database using inverse dynamics [Fitzpatrick et al., 2012]. Secondly, we applied the same loads without the patellofemoral force, which is often used in experimental set-ups. Finally, only the peak tibiofemoral force was applied, as a single loading instance. We calculated the average of micro-motions of all nodes per increment to compare different calculation techniques. The percentage of area with resulting micro-motions less than 5 µm was also calculated.

The percentage of surface area was increased non-linearly when the interference fit changed from 0 to 100 µm particularly for squat movement. Tracking nodes over multiple cycles showed implant migration with interference-fits lower than 30µm (Fig. 1A). Loading configurations without the patellofemoral force, and with only the peak tibiofemoral force slightly overestimated and underestimated the resulting micro-motions of squat movement, respectively; although, the effect was less obvious for the gait simulation when no patella force was applied. Both incremental and reference micro-motions underestimated the resulting micro-motions (Fig. 1B). Interestingly, the reference micro-motions followed the pattern of the tibiofemoral contact force (Fig. 1B).

The calculation technique has a substantial effect on the micro-motions, which means there is a room for interpretation of micro-motions analyses. This furthermore stresses the importance of validation of the predicted micro-motions against experimental set-ups. In addition, the minor effect of loading configurations indicates that a simplified loading condition using only the peak tibiofemoral force is suitable for experimental studies. From a clinical perspective, the migration pattern of femoral components implanted with a low interference fit stresses the role of an adequate surgical technique, to obtain a good initial stability.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 140 - 140
1 Jan 2016
de Ruiter L Janssen D Briscoe A Verdonschot N
Full Access

Introduction

Conventional implant designs in total knee arthroplasty (TKA) are based on metal on UHMWPE bearing couples. Although this procedure is quite successful, early loosening is still a matter of concern. One of the causes for early failure is stress shielding, leading to loss of bone stock, periprosthetic bone fractures and eventually aseptic loosening of the component. The introduction of a polyetheretherketone (PEEK) on UHMWPE bearing couple could address this problem. With mechanical properties more similar to distal (cortical) bone it could allow stresses to be distributed more naturally in the distal femur. A potential adverse effect, however, is that the femoral component and the underlying cement mantle may be at risk of fracturing. Therefore, we analyzed the effect of a PEEK-Optima® femoral component on stress shielding and the integrity of the component and cement mantle, compared to a conventional Cobalt-Chromium (CoCr) alloy implant.

Methods

We created a Finite Element (FE) model of a reconstructed knee in gait, based on the ISO-14243-1 standard. The model consisted of an existing cemented cruciate retaining TKA design implanted on a distal femur, and a tibial load applicator, which together with the bone cement layer and the tibial implant is referred to as the tibial construct. The knee flexion angle was controlled by the femoral construct, consisting of the femoral implant, the bone cement and the distal femur. The tibial construct was loaded with an axial force, anterior-posterior (AP) force and a rotational torque, representing the ground reaction force, soft tissue constraints and internal/external rotation of the tibia, respectively. The integrity of the femoral component and cement mantle were expressed as a percentage of their yield stress. Stress shielding in the periprosthetic femur was evaluated by the strain energy (density) in the bone and compared to a model replicating an intact knee joint.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 48 - 48
1 Jan 2016
Bitter T Janssen D Schreurs BW Marriott T Khan I Verdonschot N
Full Access

Introduction

Recent reports implicate fretting corrosion at the head-stem taper junction as a potential cause of failure of some large diameter metal-on-metal (MOM) devices. Fretting observed at modular junctions is thought to be a type of ‘mechanically assisted’ corrosion phenomenon, initiated by mechanical factors that lead to an increase in contact stresses and micromotions at the taper interface. These may include: intra-operative taper assembly, taper contamination by debris or body fluids, patient weight and ‘toggling’ of the head or increased frictional torque in a poorly functioning bearing.

We adopted a finite element approach to model the head-taper junction, to analyze the contact mechanics at the taper interface. We investigated the effect of assembly force and angle on contact pressures and micromotions, during loads commonly used to test hip implants.

Materials and methods

Models of the Biomet Type-1 taper, a 60 mm head and a taper adaptor were created. These models were meshed with a mesh size based on a mesh density convergence study. Internal mesh coarsening was applied to reduce computational cost.

Elastic-plastic material properties based on tensile tests were assigned to all titanium components. The contact conditions used in the FE analyses were validated against push-on and pull-off experiments, resulting in a coefficient of friction of 0.5.

To analyze micromotions at the taper-adaptor connection, the models were loaded with 2300N (ISO 7206-4) and 5340N (ISO 7206-6), after being assembled with 2-4-15 kN, axially and under a 30º angle. This ISO standard is commonly used to determine endurance properties of stemmed femoral components.

Micromotions and contact pressures were analyzed by scoring them to an average micromotion and average contact pressure for the surface area in contact.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 44 - 44
1 Jan 2016
Berahmani S Janssen D Wolfson D De Waal Malefijt M Verdonschot N
Full Access

Femoral knee implants have promising outcomes, although some high-flex designs have shown rather high loosening rates (Han et al., 2007). In uncemented implants, it is vital to limit micromotions at the implant-bone interface, to facilitate secondary fixation through bone ingrowth (kienapfel et al., 1999). Hence, it is essential to investigate how micromotions of different uncemented implants are affected by various loading conditions when a range of bone qualities as a patient-related factor is applied.

Using finite element (FE) analysis, we simulated implant-bone interface micromotions during four consecutive cycles of normal gait and squat movements. An FE model of a distal femur was generated based on calibrated CT-scans, after which Sigma® and LCS® Cruciate-Retaining Porocoat® components (DePuy Synthes, Leeds, UK) were implanted. Using a frictional contact algorithm (µ=0.95), an initial press-fit fixation was simulated, which was previously validated against experimental data. The micromotions were calculated by tracking the projection of implant nodes on the bone surface excluding overhang area. The applied loading patterns were based on discretized simulations, providing incremental loads for each activity based on implant-specific kinematics, which was derived from Orthoload database using inverse dynamics (Fitzpatrick et al., 2012). This provided the opportunity to calculate incremental micromotions, but also the resulting micromotions for each single cycle, for both activities. In addition, the percentage of implant surface area with resulting micromotions less than a defined threshold was calculated.

Regardless of the type of loading, in all simulations, the predicted micromotions were highest in the first cycle, suggesting settling of the implant during initial cycle. The Sigma®implant displayed a 30% larger area with micromotions below the threshold of 5 microns, for both loading conditions (Fig. 1A). The highest micromotions occurred at the anterior flange, regardless of type of activity or design. Squatting had a more detrimental effect on the primary stability, with smaller areas of low micromotions as compared to the gait load (Fig. 1B). Bone stiffness had a minor effect, which was more apparent for squatting (Fig. 1B).

We found acceptable low ranges of micromotions in both implant designs, although demanding activities such as squatting generated higher motions. In addition, LCS® experienced higher micromotions, probably caused by the smaller contact area at bone-implant interface compared with Sigma®. Nevertheless, the predicted micromotions were all below the clinically relevant threshold for bone ingrowth (<40 microns) (kienapfel et al., 1999). Furthermore, our simulated settling behavior stresses the necessity for simulating multiple loading cycles, rather than just a single cycle. The effect of bone stiffness was evident, but only to a limited extent. The main current limitation of our study is the utilization of an elastic material model for the bone which is probably the reason to predict a low range of micromotions. We are planning to make the material model more realistic, by including plasticity and viscoelastic bone behavior.