Recent total knee arthroplasty (TKA) designs have featured more anatomical morphologies and shorter tibial keels. However, several reports have raised concerns about the impact of these modifications on implant longevity. The aim of this study was to report the early performance of a modern, cemented TKA design. All patients who received a primary, cemented TKA between 2012 and 2017 with a minimum two-year follow-up were included. The implant investigated features an asymmetrical tibial baseplate and shortened keel. Patient demographic details, Knee Society Scores (KSS), component alignment, and the presence of radiolucent lines at final follow-up were recorded. Kaplan-Meier analyses were performed to estimate survivorship.Aims
Methods
Recent total knee arthroplasty (TKA) designs have featured more anatomic morphologies and shorter tibial keels. However, several reports have raised concerns regarding the impact of these modifications on implant longevity. This study's purpose is to report the early performance of a modern, cemented TKA design. All patients who received a primary, cemented TKA from 2012 to 2017 with a minimum two-year follow-up were included. This implant features an asymmetric tibial baseplate and a shortened keel. Patient demographics, Knee Society Scores (KSS), and component alignment were recorded, and Kaplan-Meier survivorship analyses were performed.Introduction
Methods
A retrospective longitudinal study was conducted to compare directly volumetric wear of retrieved polyethylene inserts to predicted volumetric wear modelled from individual gait mechanics of total knee arthroplasty (TKA) patients. In total, 11 retrieved polyethylene tibial inserts were matched with gait analysis testing performed on those patients. Volumetric wear on the articular surfaces was measured using a laser coordinate measure machine and autonomous reconstruction. Knee kinematics and kinetics from individual gait trials drove computational models to calculate medial and lateral tibiofemoral contact paths and forces. Sliding distance along the contact path, normal forces and implantation time were used as inputs to Archard’s equation of wear to predict volumetric wear from gait mechanics. Measured and modelled wear were compared for each component.Aims
Methods
Studies of retrieved total knee replacement (TKR) components demonstrate that Eleven retrieved ultra-high molecular weight polyethylene (UHMWPE) cruciate-retaining tibial liner components from ten separate patients (implantation time = 8.6±5.6 years) had matching gait trials of normal level walking for each knee. Volume loss on retrieved components was calculated using a coordinate measuring machine and autonomous reconstruction.3 Motion analysis of normal level walking gait had been conducted between 1986 and 2005 for various previous studies and stored in a consented Human Mechanics Repository, ranging from pre-operative to long-term post-operative testing. Contact location between the femoral component and the tibial component on the medial and lateral plateaus were calculated throughout stance.4 A previously validated and fine-tuned parametric numerical model was used to calculate TKR contact forces for each gait trial.5 Vertical contact forces and contact paths on the medial and lateral plateaus were input as normal force and sliding distance to a simplified Archard equation for wear with material wear constant = 2.42 × 10−7 mm3/Nm2,6 to compute average wear per gait cycle. Wear rates were calculated using linear regression, and Pearson correlation examined correlations between modeled and measured wear.Introduction
Methods
This study explores whether subjects with bicruciate retaining TKRs (BiCR) have more normal knee biomechanics during level walking and stair ascent than subjects with posterior cruciate retaining TKRs (PCR). Due to anterior cruciate ligament (ACL) preservation, we expect BiCR subjects will not show the reduced flexion and altered muscle activation patterns characteristic of persons with TKRs. Motion and electromyography (EMG) data were collected during level walking and stair climbing for 16 BiCR subjects (4/12 m/f, 65±3 years, 30.7±7.0 BMI, 8/8 R/L), 17 PCR subjects (2/15 m/f, 65±7 years, 30.4±5.1 BMI, 7/10 R/L), and 17 elderly healthy control subjects (8/9 m/f, 55±10 years, 25.8±4.0 BMI, 10/7 R/L), using the point cluster marker set. Surface EMG electrodes were placed on the vastus medialis obliquus (VMO), rectus femoris (RF), biceps femoris (BF), and semitendinosus (ST) muscles. EMG data are reported as percent relative voluntary contraction (%RVC), normalized to the average peak EMG signals during level walking. Statistical nonparametric mapping was used for waveform analysis.Introduction
Methods