Novel regenerative therapies have the potential to restore function and relieve pain in patients with low back pain (LBP) caused by intervertebral disc (IVD) degeneration. We have previously shown that stimulation of adipose-derived stem cells (ASCs) with growth differentiation factor-6 (GDF6) promotes differentiation into nucleus pulposus (NP) cells of the IVD, which have potential for IVD regeneration. We have also shown that GDF6 stimulation activates the Smad1/5/8 and ERK1/2 signalling cascades. The aim of this study was to progress our understanding of the immediate/early response mechanisms in ASCs (N=3) which may direct GDF6-induced differentiation. RNAseq was used to perform transcriptome-wide analysis across a 12-hour time course, post-stimulation. Gene ontology analysis revealed greater transcription factor and biological processes activity at 2hrs than at the 6hr and 12hr time points, where molecular and cellular activities appeared to stabilise. Interestingly, a number of lineage determining genes were identified as differentially expressed and work is ongoing to investigate whether the early response genes are maintained throughout differentiation, or whether they are responsible for early NP lineage commitment.Study purpose and background
Methods and results
Mesenchymal stem-cell based therapies have been
proposed as novel treatments for intervertebral disc degeneration,
a prevalent and disabling condition associated with back pain. The
development of these treatment strategies, however, has been hindered
by the incomplete understanding of the human nucleus pulposus phenotype
and by an inaccurate interpretation and translation of animal to
human research. This review summarises recent work characterising
the nucleus pulposus phenotype in different animal models and in
humans and integrates their findings with the anatomical and physiological
differences between these species. Understanding this phenotype
is paramount to guarantee that implanted cells restore the native
functions of the intervertebral disc. Cite this article: