header advert
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 134 - 134
11 Apr 2023
Wong K Koh S Tay X Toh R Mohan P Png M Howe T
Full Access

A painful “dreaded black line” (DBL) has been associated with progression to complete fractures in atypical femur fractures (AFF). Adjacent sclerosis, an unrecognized radiological finding, has been observed in relation to the DBL. We document its incidence, associated features, demographics and clinical progression.

We reviewed plain radiographs of 109 incomplete AFFs between November 2006 and June 2021 for the presence of sclerosis adjacent to a DBL. Radiographs were reviewed for location of lesions, and presence of focal endosteal or periosteal thickening. We collected demographical data, type and duration of bisphosphonate therapy, and progression to fracture or need for prophylactic stabilization, with a 100% follow up of 72 months (8 – 184 months).

109 femurs in 86 patients were reviewed. Seventeen sclerotic DBLs were observed in 14 patients (3 bilateral), involving 15.6% of all femora and 29.8% of femora with DBLs. Location was mainly subtrochanteric (41.2%), proximal diaphyseal (35.3%) and mid-diaphyseal (23.5%), and were associated with endosteal or periosteal thickening. All patients were female, mostly Chinese (92.9%), with a mean age of 69 years. 12 patients (85.7%) had a history of alendronate therapy, and the remaining 2 patients had zoledronate and denosumab therapy respectively. Mean duration of bisphosphonate therapy was 62 months. 4 femora (23.5%) progressed to complete fractures that were surgically managed, whilst 6 femora (35.3%) required prophylactic fixation.

Peri-lesional sclerosis in DBL is a new radiological finding in AFFs, predominantly found in the proximal half of the femur, at times bilateral, and are always associated with endosteal or periosteal thickening. As a high proportion of patients required surgical intervention, these lesions could suggest non-union of AFFs, similar to the sclerotic margins commonly seen in fractures with non-union. The recognition of and further research into this new feature could shed more light on the pathophysiological progression of AFFs.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 33 - 33
4 Apr 2023
Pareatumbee P Yew A Koh J Zainul-Abidin S Howe T Tan M
Full Access

To quantify bone-nail fit in response to varying nail placements by entry point translation in straight antegrade humeral nailing using three-dimensional (3D) computational analysis

CT scans of ten cadaveric humeri were processed in 3D Slicer to obtain 3D models of the cortical and cancellous bone. The bone was divided into individual slices each consisting of 2% humeral length (L) with the centroid of each slice determined. To represent straight antegrade humeral nail, a rod consisting of two cylinders with diameters of 9.5mm and 8.5mm and length of 0.22L mm and 0.44L mm respectively joined at one end was modelled. The humeral head apex (surgical entry point) was translated by 1mm in both anterior-posterior and medio-lateral directions to generate eight entry points. Total nail protrusion surface area, maximum nail protrusion distance into cortical shell and top, middle, bottom deviation between nail and intramedullary cavity centre were investigated. Statistical analysis between the apex and translated entry points was conducted using paired t-test.

A posterior-lateral translation was considered as the optimal entry point with minimum protrusion in comparison to the anterior-medial translation experiencing twice the level of protrusion. Statistically significant differences in cortical protrusion were found in anterior-medial and posterior-lateral directions producing increased and decreased level of protrusion respectively compared to the apex. The bottom anterior-posterior deviation distance appeared to be a key predictor of cortical breach with the distal nail being more susceptible. Furthermore, nails with anterior translation generated higher anterior-posterior deviation (>4mm) compared to posterior translation (<3mm).

Aside from slight posterolateral translation of the entry point from the apex, inclusion of a distal posterior-lateral bend into current straight nail design could improve nail fitting within the curved humeral bone, potentially improving distal working length within the flat and narrow medullary canal of the distal humeral shaft.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 32 - 32
4 Apr 2023
Pareatumbee P Yew A Meng Chou S Koh J Zainul-Abidin S Howe T Tan M
Full Access

To analyse bone stresses in humerus-megaprosthesis construct in response to axial loading under varying implant lengths in proximal humeral replacement following tumour excision.

CT scans of 10 cadaveric humeri were processed in 3D Slicer to obtain three-dimensional (3D) models of the cortical and cancellous bone. Megaprostheses of varying body lengths (L) were modelled in FreeCAD to obtain the 3D geometry. Four FE models: group A consisting of intact bone; groups B (L=40mm), C (L=100mm) and D (L=120mm) comprising of humerus-megaprosthesis constructs were created. Isotropic linear elastic behaviour was assigned for all materials. A tensile load of 200N was applied to the elbow joint surface with the glenohumeral joint fixed with fully bonded contact interfaces. Static analysis was performed in Abaqus. The bone was divided at every 5% bone length beginning distally. Statistical analysis was performed on maximum von Mises stresses in cortical and cancellous bone across each slice using one-way ANOVA (0-45% bone length) and paired t-tests (45-70% bone length). To quantify extent of stress shielding, average percentage change in stress from intact bone was also computed.

Maximum stress was seen to occur distally and anteriorly above the coronoid fossa. Results indicated statistically significant differences between intact state and shorter megaprostheses relative to longer megaprostheses and proximally between intact and implanted bones. Varying levels of stress shielding were recorded across multiple slices for all megaprosthesis lengths. The degree of stress shielding increased with implant lengthening being 2-4 times in C and D compared to B.

Axial loading of the humerus can occur with direct loading on outstretched upper limbs or indirectly through the elbow. Resultant stress shielding effect predicted in longer megaprosthesis models may become clinically relevant in repetitive axial loading during activities of daily living. It is recommended to use shorter megaprosthesis to prevent failure.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 267 - 267
1 Jul 2014
Ong Y Poh C Howe T Ng Y Yew A Koh J Morrey B
Full Access

Summary Statement

This 3-dimensional CT study on cadaveric proximal ulna provides further insight into the size and geometry of the proximal ulna intramedullary cavity with potential applications to design and sizing of proximal ulna components.

Introduction

Total elbow arthroplasty (TEA) is an established treatment for varying pathologies of the elbow with very good functional outcomes. Optimal fit of ulna components in TEA is predicated on a detailed appreciation of the 3-dimensional anatomy of the proximal ulna intra-medullary cavity, but literature remains scarce. Three-dimensional (3D) models of the proximal ulna have been constructed using computed tomography (CT) programs, accurately defining the angular relations with the cross-sectional extra-medullary dimensions. However, current CT-based thresholding techniques lack accuracy in differentiating cortical from cancellous bone in the metaphyseal region, and thus cannot properly define the intra-medullary region of uncored proximal ulnae. We investigate the geometric dimensions of the proximal ulna intra-medullary cavity using CT studies of cored cadaveric ulnae.