Abstract
Summary Statement
This 3-dimensional CT study on cadaveric proximal ulna provides further insight into the size and geometry of the proximal ulna intramedullary cavity with potential applications to design and sizing of proximal ulna components.
Introduction
Total elbow arthroplasty (TEA) is an established treatment for varying pathologies of the elbow with very good functional outcomes. Optimal fit of ulna components in TEA is predicated on a detailed appreciation of the 3-dimensional anatomy of the proximal ulna intra-medullary cavity, but literature remains scarce. Three-dimensional (3D) models of the proximal ulna have been constructed using computed tomography (CT) programs, accurately defining the angular relations with the cross-sectional extra-medullary dimensions. However, current CT-based thresholding techniques lack accuracy in differentiating cortical from cancellous bone in the metaphyseal region, and thus cannot properly define the intra-medullary region of uncored proximal ulnae. We investigate the geometric dimensions of the proximal ulna intra-medullary cavity using CT studies of cored cadaveric ulnae.
Patients & Methods
Three-dimensional models based on CT data of 17 manually cored cadaveric proximal ulnae were created using Matlab program and analyzed. The cadaveric specimens were dissected to identify the medullary canal and coring of the canal of the proximal ulna to exclude the cancellous bone was performed as for ulna canal preparation during TEA. Using the center of a circle fitted over the trochlear ridge as the origin, the diameter, coronal and sagittal angulation of the canal were determined. The diameter, posterior and lateral offsets of the proximal medullary canal were plotted against the normalised axial distance from the origin which was represented in terms of R, the radius of the circle fitted to the trochlear ridge. The normalization of the axial distance was done to compensate for the varying individual ulna lengths.
Results
The mean of the radius of the circle which was fitted to the trochlear ridge, R, was found to be 16.64 ± 2.71 mm. The minimum diameter of the canal increased from the origin and peak at 2.3R (just distal to the coronoid process) with a value of 7.08 ± 1.74 mm, decreasing in a linear fashion to 4.48 ± 0.91 mm at 6R. There was an increasing posterior offset which was linear in nature (R2 = 0.954) up to 6R (approximately 97mm from the origin). Likewise, the lateral offset increased in a linear fashion (R2 = 0.996).
Discussion
The findings of our study most likely represent the effective minimum diameter for optimal implant placement, which are consistent with previously documented cadaveric dimensions. The findings also support the current tapered component design of the proximal ulna stemmed implants without the need for significant angulation.
Conclusion
Our study provides further insight into the size and geometry of the proximal ulna intramedullary cavity with potential applications to design and sizing of proximal ulna components.