The aims of this study were to develop an in vivo model of periprosthetic joint infection (PJI) in cemented hip hemiarthroplasty, and to monitor infection and biofilm formation in real-time. Sprague-Dawley rats underwent cemented hip hemiarthroplasty via the posterior approach with pre- and postoperative gait assessments. Infection with Aims
Methods
As new innovations are developed to improve the longevity of joint replacement components, preclinical testing is necessary in the early stages of research into areas such as osseointegration, metal-cartilage wear and periprosthetic joint infection (PJI). Large-animal studies that test load-bearing components are expensive, however, requiring that animals be housed in special facilities that are not available at all institutions. Comparably, small animal models, such as the rat, offer several advantages including lower cost. Load-bearing implants remain difficult to manufacture via traditional methods in the sizes required for small-animal testing. Recent advances in additive manufacturing (3D metal-printing) have allowed for the creation of miniature joint replacement components in a variety of medical-grade metal alloys. The objective of this work is to create and optimize an image-based 3D-printed rat hip implant system that will allow in vivo testing of functional implant properties in a rat model. A database of n=25 previously-acquired, 154μm micro-CT volumes (eXplore Locus Ultra, GE Medical) of male Sprague-Dawley rats (390–610g) were analyzed to obtain spatial and angular relationships between several anatomical features of the proximal rat femora. Mean measurements were used to guide the creation of a femoral implant template in computer-aided design software (Solidworks, Dassault Systemes). Several different variations were created, including collarless and collared designs, in a range of sizes to accommodate rats of various weights. Initial prototypes were 3D-printed 316L stainless steel with subsequent iterations printed in Ti6Al4V titanium and F75 cobalt-chrome. Implants were post-processed via sandblasting, hand-polishing, ultrasonic bath, and sterilization in an autoclave. Innate surface texturing was left on manufactured stems to promote osseointegration. Surgical implantation was performed in three live Sprague-Dawley rats (900g, 500g, 750g) with preservation of muscle attachments to the greater trochanter. Micro-CT imaging and X-ray fluoroscopy were performed post-operatively on each animal at 1 day, and 1, 3, 9 and 12 weeks to evaluate gait and component positioning.Introduction
Methods
We present a case of early retrieval of an Oxinium femoral head and corresponding polyethylene liner where there was significant surface damage to the head and polyethylene. The implants were retrieved at the time of revision surgery to correct leg-length discrepancy just 48 hours after the primary hip replacement. Appropriate analysis of the retrieved femoral head demonstrated loss of the Oxinium layer with exposure of the underlying substrate and transfer of titanium from the acetabular shell at the time of a reduction of the index total hip replacement. In addition, the level of damage to the polyethylene was extensive despite only 48 hours The purpose of this report is to highlight the care that is required at the time of reduction, especially with these hard femoral counter-faces such as Oxinium. To our knowledge, the damage occurring at the time of reduction has not been previously reported following the retrieval of an otherwise well-functioning hip replacement.