Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Hip

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 32 - 32
23 Jun 2023
Jacobs JJ Agarwal P Leurgans SE Agrawal S Ayton S Bush AI Hall DJ Schneider J Pourzal R
Full Access

Both total joint arthroplasty (TJA) and Alzheimer's Disease (AD) are prevalent in elderly populations. It is the goal of this study to determine if the presence of implant metals originating from TJA correlates with the onset with higher implant metal content in the brain and AD pathology.

Tissue samples from four brain regions of 701 (229 with TJA) participants from an ongoing longitudinal cohort study (Rush Memory and Aging Project) was analyzed including the inferior-temporal-cortex (ITC), which is associated with early onset of AD. Implant metal (Co, Cr, Mo, Ti, Al) content was determined by ICP-MS. Comparisons were conducted between the no-TJA-group and a TJA group. Due to the higher likelihood of Co release the TJA group was further differentiated in a THA (N=146) and a TKA/TSA (N=83) group. Diffuse and neuritic amyloid plaques and phosphorylated tau were assessed and summarized as standard measures of AD pathology. We used separate linear regression models adjusted for age, sex, education, and APOɛ4-status for the associations of all metals (log-transformed) with global AD pathology, amyloid plaques, and phosphorylated tau.

The THA group had higher cobalt content across all brain regions (p=0.003) and within the ITC (p=0.051) compared to the no-TJA group, whereas the TKA/TSA group did not. Across all tissue samples, Co was associated with higher amyloid load (β=0.35, p=0.027), phosphorylated tau (β=0.47, p=0.011), and global AD pathology (β=0.19, 0.0004) in the ITC. The presence of TJA itself was not associated with AD pathology.

We showed that only Co content was higher within the ITC in persons with THA. We found among all tested metals that Co was consistently associated with AD pathology. Although we found an association of cobalt with AD pathology, the cross-sectional nature of this study does not allow the determination of cause and effect.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_10 | Pages 45 - 45
1 Oct 2020
Jacobs JJ McCarthy SM Hall DJ Levine BR Lundberg HJ Pourzal R
Full Access

Introduction

Total hip replacement failure due to fretting-corrosion remains a clinical concern. We recently described that damage within CoCrMo femoral heads can occur either by mechanically-dominated fretting processes leading to imprinting (via rough trunnions) and surface fretting (via smooth trunnions), or by a chemically-dominated etching process along preferential corrosion sites, termed “column damage”. These corrosion sites occur due to banding of the alloy microstructure. Banding is likely caused during thermo-mechanical processing of the alloy and is characterized by local molybdenum depletion. It was the objective of this study to quantify material loss from femoral heads with severe corrosion, identify the underlying damage modes, and to correlate the damage to the alloy's microstructure.

Methods

105 femoral heads with a Goldberg score 4 were evaluated. Coordinate measuring machine data was used to compute material loss and visualize damage features. Time in situ and stem alloy were identified. Metallographic samples were produced for each case. Grain size and banding were identified using light-microscopy. Mann-Whitney tests were conducted to compare material loss between groups.