Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 40 - 40
1 Feb 2021
Neto M Hall D Frisch N Fischer A Jacobs J Pourzal R
Full Access

Ti-6Al-4V is the most common alloy used for orthopaedic implants. Its popularity is due to low density, superior corrosion resistance, good osseointegration and lower elastic modulus when compared to other commonly used alloys such as CoCrMo and stainless steel. In fact, the use of Ti64 has even further increased lately since recent controversy around adverse local tissue reactions and implant failure related to taper corrosion of CoCrMo alloy. However, implants made from Ti64 can fail in some cases due to fatigue fracture, sometimes related to oxide induced stress corrosion cracking or hydrogen embrittlement, or preferential corrosion of the beta phase. Studies performed with Ti-6Al-4V do often not consider that the alloy itself may have a range of characteristics that can vary and could significantly impact the implant properties. These variations are related to the material microstructure which depends not only on chemical composition, but also the manufacturing process and subsequent heat treatments. Different microstructures can occur in implants made form wrought alloys, cast alloys, and more recently, additive manufactured (AM) alloys. Implant alloy microstructure drives mechanical and electrochemical properties. Therefore, this study aims to analyse the microstructure of Ti-6Al-4V alloy of additive manufactured and conventional retrieved orthopaedic implants such as acetabular cups, tibial trays, femoral stem and modular neck by means of electron backscatter diffraction (EBSD). Microstructural features of interest include grains shape and size, phase content and distribution, preferred grain orientation (texture), alloying elements distribution (homogenization) and presence of impurities. Additionally, we demonstrate the direct impact of different microstructural features on hardness. We analysed 17 conventional devices from 6 different manufacturers, 3 additive manufactured devices from 2 different manufactures and 1 control alloy (bar stock). The preliminary results showed that even though all implants have the same chemical composition, their microstructural characteristics vary broadly. Ti64 microstructure of conventional alloys could be categorized in 3 groups: equiaxed grains alloys (Fine and Coarse), bimodal alloys and dendritic alloys. The additive manufactured implants were classified in an additional group on its own which consists of a needle-like microstructures - similar to Widmanstätten patterns, Fig. 1, with a network of β phase along α phase grains. Furthermore, AM alloys exhibited residual grain boundaries from the original β grains from the early stage of the solidification process, Fig. 2. These characteristics may have implication on the fatigue and corrosion behaviour. In addition, it we observed inhomogeneous alloying element distribution in some cases, Fig. 3, especially for the additive manufactured alloys, which also may have consequences on corrosion behaviour. Finally, the hardness testing revealed that the implants with large grain size, such as AM alloys, exhibit low hardness values, as expected, but also the amount of beta phase correlated positively with lower hardness. Grain aspect ratio and beta phase grain size correlated positively with higher hardness. In summary, we found that common Ti64 implants can exhibit a broad variety of different alloy microstructures and the advent of AM alloys introduces an entirely new category. It is imperative to determine the ideal microstructure for specific applications.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 68 - 68
1 Jul 2020
Hall D Pourzal R Jacobs J Urban R
Full Access

Little is known about the relationship between head-neck corrosion and its effect on the periprosthetic tissues and distant organs of patients hosting well-functioning devices. The purpose of this study was to investigate in postmortem retrieved specimens the degree and type of taper damage, and the corresponding histologic responses in periprosthetic tissues and distant organs.

Fifty postmortem THRs (34 primaries, 16 revisions) retrieved after 0.5 to 26 years were analyzed. Forty-three implants had a CoCrMo stem and seven had a Ti6Al4V stem. All heads were CoCrMo and articulated against polyethylene cups (19 XLPE, 31 UHMWPE). H&E sections of joint pseudocapsules, liver, spleen, kidneys and lymph nodes were graded 1–4 for the intensity of various inflammatory cell infiltrates and tissue characteristics. Corrosion damage of the taper surfaces was assessed using visual scoring and quantitated with an optical coordinate measuring machine. SEM analysis was used to determine the acting corrosion mode. Polyethylene wear was assessed optically. The majority of tapers had minimal to mild damage characterized by local plastic deformation of machining line peaks. Imprinting of the stem topography onto the head taper surface was observed in 18 cases. Column damage on the head taper surface occurred in three cases. All taper surfaces scored moderate or severe exhibited local damage features of fretting and/or pitting corrosion.

Moderate or severe corrosion of the head and/or trunnion was present in nine hips. In one asymptomatic patient with bilateral hips, lymphocyte-dominated tissue reactions involving perivascular infiltrates of lymphocytes and plasmacytes were observed. In this patient, mild, focal lymphocytic infiltrates were also present in the liver and kidneys, and there was focal histiocytosis and necrosis of the para-aortic lymph nodes. These two implants, which had been in place for 58.6 and 60.1 months, had severe intergranular corrosion of the CoCrMo trunnion, and column damage and imprinting on the head taper. In the other 41 hips, macrophage responses in the joint pseudocapsule to metallic and/or polyethylene wear particles ranged widely from minimal to marked. Focal necrosis in the pseudocapsules of 12 arthroplasties was related to high concentrations of CoCrMo, TiAl4V, TiO, BaSO4 and polyethylene wear particles. High concentrations of these particles were also detected in para-aortic lymph nodes. Rare to mild macrophages were observed in liver and spleen.

This is a comprehensive study of wear and corrosion within well-functioning postmortem retrieved THRs, and the resulting local and distant tissue reactions. One of eight patients with moderate or severe corrosion did have a subclinical inflammatory response dominated by lymphocytes after five years. To what extent such an inflammatory process might progress to become symptomatic is not known. Ionic and particulate products generated by corrosion disseminated systemically. The minor lymphocytic infiltrate in the liver and kidneys of one subject with bilateral severely corroded head-neck junctions might suggest possible metal toxicity. The diagnosis of adverse tissue reactions to corrosion of modular junctions can be challenging. Postmortem retrieval studies add to our understanding of the nature and progression of lymphocyte-dominated adverse local and potentially systemic tissue reactions to corrosion of modular junctions.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 71 - 71
1 Feb 2020
Sipek K Gustafson J McCarthy S Hall D Lundberg H Levine B Pourzal R
Full Access

Introduction

Total hip arthroplasty (THA) is a commonly performed procedure to relieve arthritis or traumatic injury. However, implant failure can occur from implant loosening or crevice corrosion as a result of inadequate seating of the femoral head onto the stem during implantation. There is no consensus—either by manufacturers or by the surgical community—on what head/stem assembly procedure should be used to maximize modular junction stability. Furthermore, the role of “off-axis” loads—loads not aligned with the stem taper axis—during assembly may significantly affect modular junction stability, but has not been sufficiently evaluated.

Objective

The objective of this study was to measure the three-dimensional (3D) head/stem assembly loads considering material choice—metal or ceramic—and the surgeon experience level.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 72 - 72
1 Feb 2020
Hall D Garrigues G Blanchard K Shewman E Nicholson G Pourzal R
Full Access

Introduction

The combined incidence of anatomic (aTSA) and reverse total shoulder arthroplasties (rTSA) in the US is 90,000 per annum and rising. There has been little attention given to potential long-term complications due to periprosthetic tissue reactions to implant debris. The shoulder has been felt to be relatively immune to these complications due to lower acting loads compared to other joint arthroplasties. In this study, retrieved aTSAs and rTSAs were examined to determine the extent of implant damage and to characterize the nature of the corresponding periprosthetic tissue responses.

Methods

TSA components and periprosthetic tissues were retrieved from 23 (eleven aTSA, twelve rTSA). Damage to the implants was characterized using light microscopy. Head/stem taper junction damage was graded 1–4 as minimal, mild, moderate or marked. Damage on polyethylene (PE) and metal bearing surfaces was graded 1–3 (mild, moderate, marked). H&E stained sections of periprosthetic soft tissues were evaluated for the extent and type of cellular response. A semi-quantitative system was used to score (1=rare to 4=marked) the overall number of particle-laden macrophages, foreign body giant cells, lymphocytes, plasma cells, eosinophils, and neutrophils. Implant damage and histopathological patterns were compared between the two TSA groups using the Mann-Whitney and Spearman tests.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 103 - 103
1 Feb 2020
Liu S Hall D McCarthy S Chen S Jacobs J Urban R Pourzal R
Full Access

Wear and corrosion debris generated from total hip replacements (THR) can cause adverse local tissue reactions (ALTR) or osteolysis, often leading to premature implant failure. The tissue response can be best characterized by histopathological analysis, which accurately determines the presence of cell types, but is limited in the characterization of biochemical changes (e.g. protein conformation alteration). Fourier transform infrared micro-spectroscopy imaging (FTIRI) enables rapid analysis of the chemical structure of biological tissue with a high spatial resolution, and minimal additional sample preparation. The data provides the most information through multivariate method carried out by hierarchical clustering analysis (HCA).

It is the goal of this study to demonstrate the beneficial use of this multivariate approach in providing pathologist with biochemical information from cellular and subcellular organization within joint capsule tissue retrieved from THR patients.

Joint capsule tissue from 2 retrieved THRs was studied. Case 1: a metal-on-polyethylene THR, and Case 2: a dual modular metal-on-metal THR. Prior to FTIRI analysis, tissue samples were formalin-fixed paraffin-embedded and 5μm thick microtome sectioned samples were prepared and mounted on BaF2 discs and deparaffinized. FTIRI data were collected using high-definition transmission mode (pixel size: ∼1.1 μm2). Hyperspectral images were exported to CytoSpec V2.0.06 for processing and reconstruction into pseudo-color maps based on cluster assignments.

Case 1 exhibited a strong presence of lymphocytes and macrophages (Fig. 1a). Since the process of taking second derivatives reduces the half width of the spectral peaks, it increases the sensitivity toward detecting shoulders or second peaks that may not be apparent in the raw spectra (Fig. 1b). Thus, areas occupied by lymphocytes and macrophages can be easily distinguished providing a fast tissue screening method. Here, HCA was able to distinguish macrophages and lymphocytes based on the infrared response, even in areas where both occurred intermixed. (Fig. 1c) The tissue in direct proximity to cells had a slightly altered collagenous structure. Case 1 also exhibited multiple glassy, green particles which can typically observed around THRs that underwent taper corrosion (Fig. 2a). HCA image was able to visualize and distinguish large CrPO4 particles, embedded within fibrin exudate rich areas, collagenous tissue without inflammatory cells, and a nearby area with a strong macrophage presence and some finer CrPO4 particles (Fig. 2d). Moreover, this method can not only locate macrophages, but distinguish particle-laden macrophages depending the type of particles within the cells. In Case 2 (Fig. 3a), clustering results (Fig. 3 b&c) are consistent with the fact that different particle types are associated with MoM bearing surface wear (Co rich particles), corrosion of the CoCrMo taper junctions (Cr-oxides and –phosphate), fretting of Ti-alloy dual modular tapers (Ti-oxides, Ti alloy particles), and even suture debris, which all occurred in this case. Although details of debris types are not available, specifications are possible by coupling other techniques.

The results demonstrate that multivariate FTIRI based spectral histopathology is a powerful tool to characterize the chemical structure and foreign body response within periprosthetic tissue, thus providing insights into the biological impact of different types of implant debris.

For any figures or tables, please contact the authors directly.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 104 - 104
1 Apr 2019
Pourzal R Hall D Lundberg H Mathew MT Urban R Jacobs J
Full Access

INTRODUCTION

The lifetime of total hip replacements (THR) is often limited by adverse local tissue reactions to corrosion products generated from modular junctions. Two prominent damage modes are the imprinting of the rougher stem topography into the smoother head taper topography (imprinting) and the occurrence of column-like troughs running parallel to the taper axis (column damage). It was the purpose of this study to identify mechanisms that lead to imprinting and column damage based on a thorough analysis of retrieved implants.

METHODS

776 femoral heads were studied. Heads were visually inspected for imprinting and column damage. Molds were made of each head taper and scanned with an optical coordinate measuring machine. The resulting intensity images were used to visualize damage on the entire surface. In selected cases, implant surfaces were further analyzed by means of scanning electron microscopy (SEM) and white light interferometry. The alloy microstructure was characterized for designs from different manufactures.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 89 - 89
1 Apr 2019
Hall D Pourzal R Wright J McCarthy S Jacobs J Urban R
Full Access

Introduction

Little is known about the relationship between head-neck corrosion and its effect on periprosthetic tissues and distant organs in the majority of patients hosting apparently well-functioning devices. We studied the degree and type of taper damage and the histopathologic response in periprosthetic tissue and distant organs.

Methods

A total of 50 contemporary THRs (34 primary, 16 revision) retrieved postmortem from 40 patients after 0.4–26 years were studied. Forty-three femoral stems were CoCrMo and 7 were Ti6Al4V. In every case, a CoCrMo-alloy head articulated against a cementless polyethylene cup (19 XLPE and 31 UHMWPE). H&E and IHC sections of the joint pseudocapsules and liver were graded 1–4 for the intensity of various inflammatory cell infiltrates and tissue necrosis. The nature of the tissue response in the joint capsule, liver, spleen, kidneys and lymph nodes was assessed. Wear and corrosion products in the tissues were identified using SEM and EDS. Taper surfaces were graded for corrosion damage using modified Goldberg scoring and examined by SEM to determine the acting corrosion mode. Correlations between damage scores and the histologic variables were generated using the Spearman test.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 94 - 94
1 Mar 2017
Pourzal R Hall D Rad E Urban R Jacobs J Mathew M
Full Access

Introduction

There are increasing reports of total hip replacement (THR) failure due to corrosion within modular taper junctions, and subsequent adverse local tissue reactions (ALTRs) to corrosion products. Modular junction corrosion is a multifactorial problem that depends on material, design, patient and surgical factors. However, the influence of alloy microstructure on corrosion has not been studied sufficiently. Especially for cast CoCrMo, there are concerns regarding microstructure variability with respect to grain size and hard-phase volume fraction. Therefore, it was the goal of this study to (1) identify different types of microstructures in contemporary implants, and (2) determine implications of alloy microstructure on the occurring corrosion modes.

Methods

Fifteen surgically retrieved femoral stems made from cast CoCrMo alloy were analyzed for this study. Damage on the taper surfaces was investigated by scanning electron microscopy (SEM) and damage was assessed with the Goldberg Score. The alloy microstructure was evaluated by standard metallographic techniques. Alloy samples were sectioned off the femoral stem, and microstructural features were visualized by chemical etching. Cyclic potentio-dynamic polarization tests were carried out with alloy samples from two implants with different commonly occurring types of microstructures. Both had a similar grain size, but type 1 had no hard-phases, where as type 2 exhibited hard-phases along the grain boundaries, as well as intra-granular hard-phase clusters. Tests were performed in bovine serum at 37°C with a saturate calomel reference electrode and a graphite counter electrode. In vitro generated corrosion damage was then compared to in vivo generated damage features on the taper surfaces of the corresponding implants.