Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

THE IMPACT OF MICRO-MOTION AND MICRO-STRUCTURE ON MODULAR JUNCTION CORROSION IN HIP ARTHROPLASTIES

International Society for Technology in Arthroplasty (ISTA) 31st Annual Congress, London, England, October 2018. Part 1.



Abstract

INTRODUCTION

The lifetime of total hip replacements (THR) is often limited by adverse local tissue reactions to corrosion products generated from modular junctions. Two prominent damage modes are the imprinting of the rougher stem topography into the smoother head taper topography (imprinting) and the occurrence of column-like troughs running parallel to the taper axis (column damage). It was the purpose of this study to identify mechanisms that lead to imprinting and column damage based on a thorough analysis of retrieved implants.

METHODS

776 femoral heads were studied. Heads were visually inspected for imprinting and column damage. Molds were made of each head taper and scanned with an optical coordinate measuring machine. The resulting intensity images were used to visualize damage on the entire surface. In selected cases, implant surfaces were further analyzed by means of scanning electron microscopy (SEM) and white light interferometry. The alloy microstructure was characterized for designs from different manufactures.

RESULTS

165 heads exhibited moderate to severe damage (modified Goldberg scale). Out of those heads 83% had imprinting and 28% exhibited column damage. In most cases with imprinting, the entire contact area between stem and head was affected (Figure 1). Several cases exhibited early signs of imprinting, usually starting on the distal-inferior and distal superior side. High resolution SEM imaging revealed that imprinting was a fretting driven process that was independent of the hardness and material of the stem and head. The SEM images showed that the main mechanism was surface fatigue under partial slip fretting. The generated wear debris was the primary driver of imprinting by three-body fretting. The effect was detrimental on the smoother head surface, but less severe on the rougher stem, where debris was pushed into the troughs of the machining mark topography.

90% of cases with column damage also exhibited imprinting. The other ten percent were either cases in which column damage was too extensive to identify imprinting, or the stem taper was smooth and therefore could not induce imprinting. Metallographic analysis showed that column damage was dictated by the alloy microstructure. Wrought alloy heads frequently exhibited banding related to slight alloy segregations. The process of column damage was entirely chemically driven with etching occurring along the banded microstructure eventually resulting in troughs that were several tens of micrometers deep (Figure 2).

DISCUSSION

Imprinting and column damage are common damage modes in THR femoral heads. Imprinting is fretting (miro-motion) driven while column damage is caused chemically, but is also dictated by the alloy micro-structure. However, the results suggest that these two damage modes may be related. The damage process starts with local fretting slowly progressing to a large area of imprinting. The imprinting process leads to widening of the crevice, enabling joint fluid and biological constituents (protein, cells, etc.) to enter the taper interface. This change in local chemistry within a confined crevice environment can cause an etching process that leads to column damage, but only if the femoral head alloy has a banded microstructure.


Email: