Rifampicin as a biofilm-active antibiotic drug has a significant role in the treatment of periprosthetic joint infection (PJI). However, rifampicin resistance is an increasing threat to PJI treatment. This study aimed to evaluate the prevalence of rifampicin resistant staphylococci over time and its association with infection-free survival after PJI in a single centre in Sweden. We included 238 PJIs in 238 patients who had undergone PJI revision surgery from 2001 to 2020 on whom the causative bacteria were staphylococci, and the agent was tested for rifampicin resistance. Data regarding agents, rifampicin resistance, treatment and outcome was obtained. Kaplan-Meier survival analysis and a Cox regression model with adjustment for age, sex, localisation (hip or knee) and type of prosthesis (primary or revision) were used to calculate infection-free survival rates and adjusted risk ratios (HRs) of the risk of treatment failure. Treatment failure was defined as any reoperation or suppression treatment with antibiotics due to prolonged infection.Aim
Methods
Metacarpal fractures represent up to 33% of all hand fractures; of which the majority can be treated non-operatively. Previous research has shown excellent putcomes with non-operative treatment yet surgical stabilisation is recommended to avoid malrotation and symptomatic shortening. It is unknown whether operative is superior to non-operative treatment in oblique or spiral metacarpal shaft fractures. The aim of the study was to compare non-operative treatment of mobilisation with open surgical stabilisation. 42 adults (≥ 18 years) with a single displaced oblique or spiral metacarpal shaft fractures were randomly assigned in a 1:1 pattern to either non-operative treatment with free mobilisation or operative treatment with open reduction and fixation with lag screws in a prospective study. The primary outcome measure was grip-strength in the injured hand in comparison to the uninjured hand at 1-year follow-up. The Disabilities of the Arm, Shoulder and Hand Score, ranges of motion, metacarpal shortening, complications, time off work, patient satisfaction and costs were secondary outcomes. All 42 patients attended final follow-up after 1 year. The mean grip strength in the non-operative group was 104% (range 73–250%) of the contralateral hand and 96% (range 58–121%) in the operatively treated patients. Mean metacarpal shortening was 5.0 (range 0–9) mm in the non-operative group and 0.6 (range 0–7) mm in the operative group. There were five minor complications and three revision operations, all in the operative group. The costs for non-operative treatment were estimated at 1,347 USD compared to 3,834USD for operative treatment; sick leave was significantly longer in the operative group (35 days, range 0–147) than in the non-operative group (12 days, range 0–62) (p=0.008). When treated with immediate free mobilization single, patients with displaced spiral or oblique metacarpal shaft fractures have outcomes that are comparable to those after operative treatment, despite some metacarpal shortening. Complication rates, costs and sick leave are higher with operative treatment. Early mobilisation of spiral or long oblique single metacarpal fractures is the preferred treatment. Trial registration number: ClinicalTrials.gov NCT03067454
Dislocation after total hip arthroplasty in individuals treated for acute hip fracture is up to 10 times more frequent than in elective patients. Whilst approach plays a role, the effect of head sizes in conventional THA and dual mobility cups (DMC) is less studied in fracture cases. The total dislocation rate at 1-year and 3-year revision rates were recorded in this observational study on 8,031 patients with acute hip fracture, treated with a THA 2005–2014. Swedish Arthroplasty Register data were linked with the National Patient Register. Cox multivariable regression models were fitted to calculate adjusted hazard ratios stratified by approach and head size. The cumulative risk of dislocation during year 1 was 2.7% (95% CI 2.2–3.2) with lateral approach and 8.3% (7.3–9.3) with posterior approach (KM estimates). In the Neither of the implant designs influenced the dislocation risk when When aiming to reduce the
Bone tissue engineering attempts at substituting critical size bone defects with scaffolds that can be primed with osteogenic cells, usually mesenchymal stem cells (MSC) from the bone marrow. Although overlooked, peripheral blood is a valuable source of MSC and circulating osteoprogenitors (COP), bearing a significant regenerative potential, and peripheral blood is easier to access than bone marrow. We thus studied osteodifferentiation of peripheral blood mononuclear cells (pbMNC) under different culture conditions, and how they compared to primary human osteoblasts. pbMNC were isolated from healthy adult volunteers by Ficoll density gradient centrifugation, and they were then cultured using media supplemented with 100nM Dexamethasone, 10mM sodium β-glycero phosphate and ascorbic acid (either 40mM or 0.05mM). For comparison, primary osteoblasts were isolated from the femoral heads of patients undergoing hip arthroplasty. After 4 weeks of culture, osteogenic activation was quantified with spectrometric measurement of alkalic phosphatase (ALP) and lactate dehydrogenase (LDH) levels. The extent of osteoid mineralization was measured with Alizarin red staining. We studied the effects of 1) varying cell concentration at seeding, 2) surface coating of culture wells with collagen and 3) high compared to low ascorbic acid (40mM and 0.05mM) media. Higher numbers of pbMNC (0.5–5.9 versus 0.062–0.25 million cells per well) at seeding resulted in a lower ALP/LDH-ratio (mean ± standard deviation), 0.39 ± 0.33 arbitrary units (AU) versus 1.36 ± 1.06 AU, but led to higher amount of osteoid production, 0.10 ± 0.06 versus 0.065 ± 0.02 AU, These findings indicate that progenitor cells derived from peripheral blood have a significant osteogenic potential, rendering them interesting candidates for seeding of scaffolds intended to fill critical sized bone defects. pbMNC produced almost double the amount of osteoid as primary osteoblasts. The isolation of pbMSC and COP is non-invasive and easy, and they might be seeded directly onto scaffolds without prior ex-vivo expansion, a question that we intend to pursue further.
Spinal cord injury is characterised by an inflammatory cascade that leads to neuronal death by neurotoxicity. In a model of spinal cord damage we successfully preserved the number of ventral horn neurons by treatment with interleukin-1 receptor antagonist (IL1RA) and neurotrophin (NT)-3. Secondary damage after spinal cord injury (SCI) is characterised by activation of microglial cells that release neurotoxic agents. This results in apoptotic death of neurons that survived the initial trauma. Interleukin (IL)-1 is one of the most prominent mediators of neurotoxicity. Organotypic spinal cord slice cultures (OSCSC) are a useful in vitro model of spinal cord injury. We have previously shown that OSCSC degenerate substantially during in vitro incubation under standard conditions. Our aim was to treat OSCSC with the putatively neuroprotective agents IL-1 receptor antagonist (IL1RA) and neurotrophin (NT)-3 and to evaluate neuronal and microglial populations as well as axonal preservation. We hypothesised that treatment with the above substances would enhance neuronal survival and suppress microglial activation.Summary Statement
Introduction
Several short femoral stems have been introduced in primary total hip arthroplasty, supposedly in order to save proximal bone stock. We intended to analyse primary stability, changes in periprosthetic bone mineral density (BMD), and clinical outcome after insertion of the uncemented collum femoris preserving (CFP)-femoral device. A prospective cohort study on 30 patients scheduled for receiving the CFP-stem combined with an uncemented cup was carried out. Stem migration was analysed by radiostereometry (RSA). Preoperative total hip BMD and postoperative periprosthetic BMD in Gruen zones 1–7 was investigated by DXA, and the Harris hips score (HHS) was determined. The patients were followed up to 12 months.Introduction
Methods
Stiffness of the knee after total knee arthroplasty (TKA) impairs knee function and reduces patient satisfaction. Limited preoperative range of motion (ROM) and a diagnosis of osteoarthritis seem to be associated with postoperative stiffness, and medical comorbidities such as diabetes mellitus have been discussed as predisposing factors. The present study was undertaken in order to analyse both patient-related and surgical factors that could be associated with the need for mobilization under anaesthesia (MUA) after TKA. We designed a case-control-study and extracted the study population from our local arthroplasty register. We identified all patients in our register that required MUA following primary TKA (n=35) and then randomly selected 4 control patients for each case of MUA. Incomplete medical records resulted in the exclusion of 18 patients, leaving 157 patients. Univariate analysis was used in order to investigate differences between the two groups with respect to demographics, pre- and postoperative ROM, medical or psychiatric comorbidities, and the type of implant. Variables with a proposed influence on outcome were entered into a binary logistic regression model, and risk ratios (RR) were calculated with 95% confidence intervals (CI).Introduction
Methods
The aim of this experimental study was to provide an in vitro model suitable for the investigation of the complex interactions of neurons with non-neuronal cells that take place throughout the degenerative and regenerative processes induced by spinal cord injury. Organotypic spinal cord slice cultures (OSCSC) were prepared from postnatal Wistar rats (p0–12), were sustained in vitro up to 12 days and characterized by immunohistochemistry by well-established markers such as NeuN, Calbindin, GFAP, IB4 and Nestin. Calbindin+ neurons, distributed across the entire gray matter, were visible also after longer culture periods. NeuN+ neurons were best preserved in the dorsal horn, whereas large NeuN+ and ChAT+ motoneurons in the ventral horn vanished after 3 days in vitro. GFAP+ astro-cytes, initially restricted to the white matter, invaded the gray matter of OSCSC early during the culture period. Microglial cells, stained by Griffonia simplicifolia isolectin B4, were rapidly activated in the dorsal tract and in the gray matter, but declined in number with time. Nestin-immunoreactivity was found in animals of all age groups, either in cells interspersed in the ependymal lining around the central canal, or in cells resembling protoplasmic astrocytes. OSCSC derived from p0 or p3 animals showed a better preservation of the cytoarchitecture than cultures derived from older animals. In summary, OSCSC contain defined neuronal populations, the cytoarchitecture is partially preserved, and the glial reaction is self-limited. Our model of OSCSC could prove useful in future experiments on the patho-physiology of spinal cord injury
Aim of this experimental study was to develop an in vitro model that simplifies the study of various factors regulating neuronal regeneration. An in vitro-system that allows co-culture of slices from rat motorcortex and spinal cord (p4) was established. Two groups of cultures were investigated: In the first group, intact spinal cord slices were cultured adjacent to motorcortex slices, while in the second group the spinal cord slices were sagitally cut into halves, with the sectioned interface placed directly adjacent to the motorcortex, in order to prevent the spinal white matter from interference. Each group was further divided into two subgroups: The NT-3 group, where the culture medium contained 50 ng/ml NT-3 and the control group treated with normal culture medium. Motorcortex pyramidal neurons were anterogradely labelled with MiniRuby, a 10 kD biotinylated dextran amine. After 4 days the co-cultures were propagated, and axonal sprouting occurred. The group of co-cultures treated with NT-3 showed an improved cortical cytoarchitecture, and sprouting axons were more frequently observed. In NT-3-treated co-cultures where spinal cord gray matter was directly opposed to cortical slices sprouting axons entered the adjacent spinal cord tissue. This phenomenon was not observed if spinal white matter was opposed to the cortical slices, or if NT-3 was absent. Our data suggest that the absence of repellent factors such as white matter and the presence of neuro-trophic factors promote axonal sprouting. Co-cultures of motorcortex and spinal cord slices combined with anterograde axonal labelling could provide a valuable in vitro model for the simplified screening of factors influencing corticospinal tract regeneration
This study presents an historical review of the treatment of talipes equino-varus during the last centuries. The aim of the study was to show how knowledge about the pathogenesis and the progress of new techniques in orthopaedic surgery (plaster of Paris, anaesthesiology, asepsis, antisepsis) have influenced the treatment of this disease during the centuries. This investigation is based on a study of the library of the German Orthopaedic and Science Museum that has more than 3000 historical books and theses from the middle of the 19th century to the present time. In the 18th and 19th century there were different theories about the pathogenesis of clubfoot. For example, Paré was of the opinion that secondary forces were responsible for the deformity. Camper and Wolff were convinced that intrauterine pressure on the extremities was the reason for pes equinovarus. Little, Stromeyer and Delpech believed that shortening of the muscles was the origin. The pathogenesis of the clubfoot is still obscure. The concept of therapy with redression and retention during the first month has not changed since Hippocrates. However, the techniques of redression and retention have changed during the decades. Machines and rural instruments were used for redression until the end of the 19th century (Lorenz, Thomas). Retention was improved by the development of new splints (Arceo, Venel, Scarpa). The introduction of plaster of Paris (Mathysen) in the treatment of the clubfoot led to a further improvement of retention in early treatment. A new era began with asepsis and anaesthesia. These techniques allowed progress in the operative therapy of the tendons. The open and subcutaneous tenotomy was developed by Delpech, Dieffenbach, and Stromeyer. In spite of the operative possibilities, we conclude that conservative treatment still has a major role in the concept of treatment for equinovarus.