Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

010 ORGANOTYPIC PRESERVATION OF DEFINED NEURONAL POPULATIONS IN A TRANSVERSE SLICE CULTURE MODEL OF POSTNATAL RAT SPINAL CORD



Abstract

The aim of this experimental study was to provide an in vitro model suitable for the investigation of the complex interactions of neurons with non-neuronal cells that take place throughout the degenerative and regenerative processes induced by spinal cord injury.

Organotypic spinal cord slice cultures (OSCSC) were prepared from postnatal Wistar rats (p0–12), were sustained in vitro up to 12 days and characterized by immunohistochemistry by well-established markers such as NeuN, Calbindin, GFAP, IB4 and Nestin.

Calbindin+ neurons, distributed across the entire gray matter, were visible also after longer culture periods. NeuN+ neurons were best preserved in the dorsal horn, whereas large NeuN+ and ChAT+ motoneurons in the ventral horn vanished after 3 days in vitro. GFAP+ astro-cytes, initially restricted to the white matter, invaded the gray matter of OSCSC early during the culture period. Microglial cells, stained by Griffonia simplicifolia isolectin B4, were rapidly activated in the dorsal tract and in the gray matter, but declined in number with time. Nestin-immunoreactivity was found in animals of all age groups, either in cells interspersed in the ependymal lining around the central canal, or in cells resembling protoplasmic astrocytes. OSCSC derived from p0 or p3 animals showed a better preservation of the cytoarchitecture than cultures derived from older animals.

In summary, OSCSC contain defined neuronal populations, the cytoarchitecture is partially preserved, and the glial reaction is self-limited. Our model of OSCSC could prove useful in future experiments on the patho-physiology of spinal cord injury

Correspondence should be addressed to Anastasia C. Tilentzoglou MD, General Secretary of the Board of Directors of HAOST, 20 A. Fleming Str. (N.Filothei), Gr. 15123 Maroussi, Athens Greece. E-mail: info@eexot.gr