The aim of this study was to assess the effect
of injecting genetically engineered chondrocytes expressing transforming
growth factor beta 1 (TGF-β1) into the knees of patients with osteoarthritis.
We assessed the resultant function, pain and quality of life. A total of 54 patients (20 men, 34 women) who had a mean age
of 58 years (50 to 66) were blinded and randomised (1:1) to receive
a single injection of the active treatment or a placebo. We assessed
post-treatment function, pain severity, physical function, quality
of life and the incidence of treatment-associated adverse events. Patients
were followed at four, 12 and 24 weeks after injection. At final follow-up the treatment group had a significantly greater
improvement in the mean International Knee Documentation Committee
score than the placebo group (16 points; -18 to 49, This technique may result in improved clinical outcomes, with
the aim of slowing the degenerative process, leading to improvements
in pain and function. However, imaging and direct observational
studies are needed to verify cartilage regeneration. Nevertheless,
this study provided a sufficient basis to proceed to further clinical testing. Cite this article:
A functional total knee replacement has to be well aligned, which implies that it should lie along the mechanical axis and in the correct axial and rotational planes. Incorrect alignment will lead to abnormal wear, early mechanical loosening, and patellofemoral problems. There has been increased interest of late in total knee arthroplasty with robot assistance. This study was conducted to determine if robot-assisted total knee arthroplasty is superior to the conventional surgical method with regard to the precision of implant positioning. Twenty knee replacements of ten robot-assisted and another ten conventional operations were performed on ten cadavers. Two experienced surgeons performed the surgery. Both procedures were undertaken by one surgeon on each cadaver. The choice of which was to be done first was randomized. After the implantation of the prosthesis, the mechanical-axis deviation, femoral coronal angle, tibial coronal angle, femoral sagittal angle, tibial sagittal angle, and femoral rotational alignment were measured via three-dimensional CT scanning. These variants were then compared with the preoperative planned values. In the robot-assisted surgery, the mechanical-axis deviation ranged from −1.94 to 2.13° (mean: −0.21°), the femoral coronal angle ranged from 88.08 to 90.99° (mean: 89.81°), the tibial coronal angle ranged from 89.01 to 92.36° (mean: 90.42°), the tibial sagittal angle ranged from 81.72 to 86.24° (mean: 83.20°), and the femoral rotational alignment ranged from 0.02 to 1.15° (mean: 0.52°) in relation to the transepicondylar axis. In the conventional surgery, the mechanical-axis deviation ranged from −3.19 to 3.84°(mean: −0.48°), the femoral coronal angle ranged from 88.36 to 92.29° (mean: 90.50°), the tibial coronal angle ranged from 88.15 to 91.51° (mean: 89.83°), the tibial sagittal angle ranged from 80.06 to 87.34° (mean: 84.50°), and the femoral rotational alignment ranged from 0.32 to 4.13° (mean: 2.76°) in relation to the transepicondylar axis. In the conventional surgery, there were two cases of outlier outside the range of 3° varus or valgus of the mechanical-axis deviation. The robot-assisted surgery showed significantly superior femoral-rotational-alignment results compared with the conventional surgery (p=0.006). There was no statistically significant difference between robot-assisted and conventional total knee arthroplasty in the other variants. All the variants were measured with high intraobserver and interobserver reliability. In conclusion, Robot-assisted total knee arthroplasty showed excellent precision in the sagittal and coronal planes of the three-dimensional CT. Especially, better accuracy in femoral rotational alignment was shown in the robot-assisted surgery than in the conventional surgery despite the fact that the surgeons who performed the operation were more experienced and familiar with the conventional surgery than with robot-assisted surgery. It can thus be concluded that robot-assisted total knee arthroplasty is superior to the conventional total knee arthroplasty.
We aimed to obtain anthropometric data on Korean
knees and to compare these with data on commonly available total
knee arthroplasties (TKAs). The dimensions of the femora and tibiae
of 1168 knees were measured intra-operatively. The femoral components
were found to show a tendency toward mediolateral (ML) under-coverage
in small femurs and ML overhang in the large femurs. The ML under-coverage
was most prominent for the small prostheses. The ML/anteroposterior
(ML/AP) ratio of Korean tibiae was greater than that of tibial components. This study shows that, for different reasons, current TKAs do
not provide a reasonable fit for small or large Korean knees, and
that the ‘gender-specific’ and ‘stature-specific’ components help
for large Korean femurs but offer less satisfactory fits for small
femurs. Specific modifications of prostheses are needed for Asian
knees.
The author developed a novel technique was for intra-operatively creating an antibiotic spacer for two-stage treatment of infected total knee replacements. An intra-operative mold is made from the removed components and that mold used to create antibiotic spacers with surface contours similar to those of the original total knee replacement. The spacers restore leg length and knee stability. This allows limited function during the interval before reimplantation of the new total knee replacement. The clinical results of 22 consecutive patients using this technique with minimum of 2 years follow-up appears to be at least equal or better than the previous reports. It is a cost effective and convenient technique for creating a suitably shaped and sized cement spacer for two-stage revision total knee replacement after infection.