Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_6 | Pages 21 - 21
2 May 2024
Palit A Kiraci E Seemala V Gupta V Williams M King R
Full Access

Ideally the hip arthroplasty should not be subject to bony or prosthetic impingement, in order to minimise complications and optimise outcomes. Modern 3d planning permits pre-operative simulation of the movements of the planned hip arthroplasty to check for such impingement. For this to be meaningful, however, it is necessary to know the range of movement (ROM) that should be simulated. Arbitrary “normal” values for hip ROM are of limited value in such simulations: it is well known that hip ROM is individualised for each patient. We have therefore developed a method to determine this individualised ROM using CT scans.

CT scans were performed on 14 cadaveric hips, and the images were segmented to create 3d virtual models. Using Matlab software, each virtual hip was moved in all potential directions to the point of bony impingement, thus defining an individualised impingement-free 3d ROM envelope. This was then compared with the actual ROM as directly measured from each cadaver using a high-resolution motion capture system.

For each hip, the ROM envelope free of bony impingement could be described from the CT and represented as a 3d shape. As expected, the directly measured ROM from the cadaver study for each hip was smaller than the CT-based prediction, owing to the presence of constraining soft tissues. However, for movements associated with hip dislocation (such as flexion with internal rotation), the cadaver measurements matched the CT prediction, to within 10°.

It is possible to determine an individual's range of clinically important hip movements from a CT scan. This method could therefore be used to create truly personalised movement simulation as part of pre-operative 3d surgical planning.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_10 | Pages 16 - 16
1 Aug 2021
Gupta V Thomas C Parsons H Metcalfe A Foguet P King R
Full Access

Total hip arthroplasty (THA) is one of the most successful surgical procedures of modern times, however debate continues as to the optimal orientation of the acetabular component and how to reliably achieve this. We hypothesised that functional CT-based planning with patient specific instruments using the Corin Optimised Positioning System (OPS) would provide more accurate component alignment than the conventional freehand technique using 2D templating.

A pragmatic single-centre, patient-assessor blinded, randomised control trial of patients undergoing THA was performed. 54 patients (age 18–70) were recruited to either OPS THA or conventional THA. All patients received a cementless acetabular component. Patients in both arms underwent pre- and post-operative CT scans, and four functional x-rays (standing and seated). Patients in the OPS group had a 3D surgical plan and bespoke guides made. Patients in the conventional group had a surgical plan based on 2D templating x-rays, and the pre-operative target acetabular orientation was recorded by the surgeon. The primary outcome measure was the difference between planned and achieved acetabular anteversion and was determined by post-operative CT scan performed at 6 weeks. Secondary outcome measures included Hip disability and Osteoarthritis Outcome Score (HOOS), Oxford Hip Score (OHS), EQ-5D and adverse events.

In the OPS group, the achieved acetabular anteversion was within 10° of the plan in 96% of cases, compared with only 76% of cases in the conventional group. For acetabular inclination, the achieved position in the OPS group was within 10° of the plan in 96% of cases, compared with in only 84% of cases in the conventional group. These differences were not statistically significant. The clinical outcomes were comparable between the two groups.

Large errors in acetabular orientation appear to be reduced when functional CT-based planning and patient-specific instruments are used compared to the freehand technique, but no statistically significant differences were seen in the difference between planned and achieved angles. Larger studies are needed to analyse this in more detail and to determine whether the reduced numbers of outliers lead to improved clinical outcomes.


Bone & Joint Research
Vol. 3, Issue 11 | Pages 321 - 327
1 Nov 2014
Palmer AJR Ayyar-Gupta V Dutton SJ Rombach I Cooper CD Pollard TC Hollinghurst D Taylor A Barker KL McNally EG Beard DJ Andrade AJ Carr AJ Glyn-Jones S

Aims

Femoroacetabular Junction Impingement (FAI) describes abnormalities in the shape of the femoral head–neck junction, or abnormalities in the orientation of the acetabulum. In the short term, FAI can give rise to pain and disability, and in the long-term it significantly increases the risk of developing osteoarthritis. The Femoroacetabular Impingement Trial (FAIT) aims to determine whether operative or non-operative intervention is more effective at improving symptoms and preventing the development and progression of osteoarthritis.

Methods

FAIT is a multicentre superiority parallel two-arm randomised controlled trial comparing physiotherapy and activity modification with arthroscopic surgery for the treatment of symptomatic FAI. Patients aged 18 to 60 with clinical and radiological evidence of FAI are eligible. Principal exclusion criteria include previous surgery to the index hip, established osteoarthritis (Kellgren–Lawrence ≥ 2), hip dysplasia (centre-edge angle < 20°), and completion of a physiotherapy programme targeting FAI within the previous 12 months. Recruitment will take place over 24 months and 120 patients will be randomised in a 1:1 ratio and followed up for three years. The two primary outcome measures are change in hip outcome score eight months post-randomisation (approximately six-months post-intervention initiation) and change in radiographic minimum joint space width 38 months post-randomisation. ClinicalTrials.gov: NCT01893034.

Cite this article: Bone Joint Res 2014;3:321–7.