Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 110 - 110
1 May 2016
Geier A Kluess D Grawe R Woernle C Bader R
Full Access

Introduction

The purpose of this study was to experimentally evaluate impingement and dislocation of total hip replacements while performing dynamic movements under physiological-like conditions. Therefore, a hardware-in-the-loop setup has been developed, in which a physical hip prosthesis actuated by an industrial robot interacts with an in situ-like environment mimicked by a musculoskeletal multibody simulation-model of the lower extremity.

Methods

The multibody model of the musculoskeletal system comprised rigid bone segments of the lower right extremity, which were mutually linked by ideal joints, and a trunk. All bone geometries were reconstructed from a computed tomography set preserving anatomical landmarks. Inertia properties were identified based on anthropometric data and by correlating bone density to Hounsfield units. Relevant muscles were modeled as Hill-type elements, passive forces due to capsular tissue have been neglected. Motion data were captured from a healthy subject performing dislocation-associated movements and were fed to the musculoskeletal multibody model. Subsequently, the robot moved and loaded a commercially available total hip prosthesis and closed the loop by feeding the physical contact information back to the simulation model. In this manner, a comprehensive parameter study analyzing the impact of implant position and design, joint loading, soft tissue damage and bone resection was implemented.