header advert
Results 1 - 20 of 43
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 59 - 59
4 Apr 2023
MacLeod A Roberts S Mandalia V Gill H
Full Access

Conventional proximal tibial osteotomy is a widely successful joint-preserving treatment for osteoarthritis; however, conventional procedures do not adequately control the posterior tibial slope (PTS). Alterations to PTS can affect knee instability, ligament tensioning, knee kinematics, muscle and joint contact forces as well as range of motion.

This study primarily aimed to provide a comprehensive investigation of the variables influencing PTS during high tibial osteotomy using a 3D surgical simulation approach. Secondly, it aimed to provide a simple means of implementing the findings in future 3D pre-operative planning and /or clinically.

The influence of two key variables: the gap opening angle and the hinge axis orientation on PTS was investigated using three independent approaches: (1) 3D computational simulation using CAD software to perform virtual osteotomy surgery and simulate the post-operative outcome. (2) Derivation of a closed-form mathematical solution using a generalised vector rotation approach (3) Clinical assessment of synthetically generated x-rays of osteoarthritis patients (n=28; REC reference: 17/HRA/0033, RD&E NHS, UK) for comparison against the theoretical/computational approaches.

The results from the computational and analytical assessments agreed precisely. For three different opening angles (6°, 9° and 12°) and 7 different hinge axis orientations (from −30° to 30°), the results obtained were identical. A simple analytical solution for the change in PTS, ΔPs, based on the hinge axis angle, α, and the osteotomy opening angle, θ, was derived:

ΔPs=sin-1(sin α sin θ)

The clinical assessment demonstrated that the absolute values of PTS, and changes resulting from various osteotomies, matched the results from the two relative prediction methods.

This study has demonstrated that PTS is impacted by the hinge axis angle and the extent of the osteotomy opening angle and provided computational evidence and analytical formula for general use.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 60 - 60
4 Apr 2023
MacLeod A Mandalia V Mathews J Toms A Gill H
Full Access

High tibial osteotomy (HTO) is an effective surgical treatment for isolated medial compartment knee osteoarthritis; however, widespread adoption is limited due to difficulty in achieving the planned correction, and patient dissatisfaction due to soft tissue irritation. A new HTO system – Tailored Osteotomy Knee Alignment (TOKA®, 3D Metal Printing Ltd, Bath, UK) could potentially address these barriers having a custom titanium plate and titanium surgical guides featuring a unique mechanism for precise osteotomy opening as well as saw cutting and drilling guides. The aim of this study was to assess the accuracy of this novel HTO system using cadaveric specimens; a preclinical testing stage ahead of first-in-human surgery according to the ‘IDEAL-D’ framework for device innovation.

Local ethics committee approval was obtained. The novel opening wedge HTO procedure was performed on eight cadaver leg specimens. Whole lower limb CT scans pre- and post-operatively provided geometrical assessment quantifying the discrepancy between pre-planned and post-operative measurements for key variables: the gap opening angle and the patient specific surgical instrumentation positioning and rotation - assessed using the implanted plate.

The average discrepancy between the pre-operative plan and the post-operative osteotomy correction angle was: 0.0 ± 0.2°. The R2 value for the regression correlation was 0.95.

The average error in implant positioning was −0.4 ± 4.3 mm, −2.6 ± 3.4 mm and 3.1 ± 1.7° vertically, horizontally, and rotationally respectively.

This novel HTO surgery has greater accuracy and smaller variability in correction angle achieved compared to that reported for conventional or other patient specific methods with published data available. This system could potentially improve the accuracy and reliability of osteotomy correction angles achieved surgically.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 67 - 67
1 Dec 2021
MacLeod A Belvedere C Fabbro GD Grassi A Nervuti G Leardini A Casonato A Zaffagnini S Gill H
Full Access

Abstract

Objectives

High tibial osteotomy for knee realignment is effective at relieving symptoms of knee osteoarthritis but the operation is surgically challenging. A new personalised treatment with simpler surgery using pre-operatively planned measurements from computed tomography (CT) imaging and 3D-printed implants and instrumentation has been designed and is undergoing clinical trial. The aim of this study was to evaluate the early clinical results of a preliminary pilot study evaluating the safety of this new personalised treatment.

Methods

The single-centre prospective clinical trial is ongoing (IRCCS Istituto Ortopedico Rizzoli; IRB-0013355; ClinicalTrials.gov NCT04574570), with recruitment completed and all patients having received the novel custom surgical treatment. To preserve the completeness of the trial reporting, only surgical aspects were evaluated in the present study. Specifically, the length of the implanted osteosynthesis screws was considered, being determined pre-operatively eliminating intraoperative measurements, and examined post-operatively (n=7) using CT image processing (ScanIP, Synopsys) and surface distance mapping. The surgical time, patient discharge date and ease of wound closure were recorded for all patients (n=25).


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 69 - 69
1 Dec 2021
MacLeod A Taylor R Casonato A Gill H
Full Access

Abstract

Objectives

Additive manufacturing has led to numerous innovations in orthopaedic surgery: surgical guides; surface coatings/textures; and custom implants. Most contemporary implants are made from titanium alloy (Ti-6Al-4V). Despite being widely available industrially and clinically, there is little published information on the performance of this 3D printed material for orthopaedic devices with respect to regulatory approval. The aim of this study was to document the mechanical, chemical and biological properties of selective laser sintering (SLS) manufactured specimens following medical device (TOKA®, 3D Metal Printing LTD, UK) submission and review by the UK Medicines and Healthcare Products Regulatory Agency (MHRA).

Methods

All specimens were additively manufactured in Ti-6Al-4V ELI (Renishaw plc, UK). Mechanical tests were performed according to ISO6892-1, ISO9585 and ISO12107 for tensile (n=10), bending (n=3) and fatigue (n=16) respectively (University of Bath, UK). Appropriate chemical characterisation and biological tests were selected according to recommendations in ISO10993 and conducted by external laboratories (Wickham Labs, UK; Lucideon, UK; Edwards Analytical, UK) in adherence with Good Lab Practise guidelines. A toxicological review was conducted on the findings (Bibra, UK).


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 22 - 22
1 Nov 2021
Belvedere C Leardini A Gill R Ruggeri M Fabbro GD Grassi A Durante S Zaffagnini S
Full Access

Introduction and Objective

Medial Knee Osteoarthritis (MKO) is associated with abnormal knee varism, this resulting in altered locomotion and abnormal loading at tibio-femoral condylar contacts. To prevent end-stage MKO, medial compartment decompression is selectively considered and, when required, executed via High Tibial Osteotomy (HTO). This is expected to restore normal knee alignment, load distribution and locomotion. In biomechanics, HTO efficacy may be investigated by a thorough analysis of the ground reaction forces (GRF), whose orientation with respect to patient-specific knee morphology should reflect knee misalignment. Although multi-instrumental assessments are feasible, a customized combination of medical imaging and gait analysis (GA), including GRF data, rarely is considered. The aim of this study was to report an original methodology merging Computed-Tomography (CT) with GA and GFR data in order to depict a realistic patient-specific representation of the knee loading status during motion before and after HTO.

Materials and Methods

25 MKO-affected patients were selected for HTO. All patients received pre-operative clinical scoring, and radiological/instrumental assessments; so far, these were also executed post-operatively at 6-month follow-up on 7 of these patients. State-of-the-art GA was performed during walking and more demanding motor tasks, like squatting, stair-climbing/descending, and chair-rising/sitting. An 8-camera motion capture system, combined with wireless electromyography, and force platforms for GRF tracking, was used together with an own established protocol. This marker-set was enlarged with 4 additional skin-based non-collinear markers, attached around the tibial-plateau rim. While still wearing these markers, all analyzed patients received full lower-limb X-ray in standing posture a CT scan of the knee in weight-bearing Subsequently, relevant DICOMs were segmented to reconstruct the morphological models of the proximal tibia and the additional reference markers, for a robust anatomical reference frame to be defined on the tibia. These marker trajectories during motion were then registered to the corresponding from CT-based 3D reconstruction. Relevant registration matrices then were used to report GRF data on the reconstructed tibial model. Intersection paths of GRF vectors with respect to the tibial-plateau plane were calculated, together with their centroids.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 113 - 113
1 Mar 2021
George A Ellis M Gill R
Full Access

Hypoxic Inducible Factor and Hypoxic mimicking agents (HMA) trigger the initiation and promotion of angiogenic-osteogenic cascade events. However, there has been paucity of studies investigating how HIF could be over expressed under chronic hypoxic conditions akin to that seen in sickle cell disease patients to help form a template for tackling the matter of macrocellular avascular necrosis. Angiogenesis and osteogenesis are tightly coupled during bone development and regeneration, and the hypoxia-inducible factor-1 alpha (HIF-1) pathway has been identified as a key component in this process studies have shown. There are still no established experimental models showing how this knowledge can be used for the evaluation of bone implant integration and suggest ways of improving osseointegration in sickle cell disease patients with hip arthroplasty and thereby prevent increased implant loosening. The aim of this study is to help develop an in vitro experimental model which would mimic the in vivo pathologic state in the bone marrow of sickle cell disease patients. It also seeks to establish if the hypoxic inducible factor (HIF) could be over expressed in vitro and thus enhancing osseointegration. MG63 osteoblastic cells were cultured under normoxia and hypoxic conditions (20%; and 1% oxygen saturation) for 48 and 72 hours. Cobalt chloride was introduced to the samples in order to mimic true hypoxia. Cells cultured under normoxic conditions and without cobalt chloride was used as the control in this study. The expression of the hypoxic inducible factor was assessed using the reverse transcriptase qualitative polymerase chain reaction (RT-qPCR). There was increased expression of HIF1-alpha at 72hours as compared to 48hours under the various conditions. The level of expression of HIF increased from 48hrs (mean rank= 4.60) to 72hrs (mean rank =5.60) but this difference was not statistically significant, X2(1) = 0.24, p =0.625. The mean rank fold change of HIF in hypoxic samples decreased compared to the normoxic samples but this difference was not statistically significant, X2(1) = 0.54, p= 0.462. Therefore, the expression of HIF is only increased with prolonged hypoxia as seen in the 72hours samples. The expression of HIF increased in samples with CoCl2 (mean rank=5.17), compared with samples without CoCl2 (mean rank 4.67), however this was not statistically significant, X2(1) = 0.067, p=0.796, p value > 0.05. The over expression of HIF was achieved within a few days (72hours) with the introduction of Cobalt Chloride, which is a mimetic for hypoxia similar to the in vivo environment in sickle cell disease patients. This is an in vitro model which could help investigate osseointergation in such pathologic bone conditions.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 25 - 25
1 Mar 2021
Zaribaf F Gill H Pegg E
Full Access

Abstract

Objectives

Ultra-High Molecular Weight Polyethylene (UHMWPE) can be made radiopaque through the diffusion of an oil-based contrast agent (Lipiodol Ultra-fluid). A similar process is used for Vitamin E incorporated polyethylene, which has a well-established clinical history. This study aimed to quantify the leaching of Lipiodol and compare to vitamin E polyethylene.

Method

GUR 1050 polyethylene (4 mm thickness) was cut into squares, 10 mm2. Samples (n=5) were immersed in 25 ml Lipiodol (Guerbet, France), or 15 ml Vitamin E (L-atocopherol, Sigma-Aldrich, UK). To facilitate diffusion, samples were held at 105°C for 18 hours. After treatment, all samples were immersed in DMEM (Sigma-Aldrich, UK) with Penicillin Streptomycin (Sigma-Aldrich, Kent, UK) at 4%v/v and held at 37°C in an incubator. Untreated polyethylene samples were included as controls. Leaching was quantified gravimetrically at weeks 2, 4 and 8. The radiopacity of the Lipiodol-diffused samples was investigated from µCT images (162kV, resolution 0.2 mm, X Tec, XT H 225 ST, Nikon Metrology, UK).


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 46 - 46
1 Mar 2021
Silvestros P Preatoni E Gill HS Cazzola D
Full Access

Abstract

Objectives

Catastrophic neck injuries in rugby tackling are rare (2 per 100,000 players per year) with 38% of these injuries occurring in the tackle. The aim of this study was to determine the primary mechanism of cervical spine injury during rugby tackling and to highlight the effect of tackling technique on intervertebral joint loads.

Methods

In vivo and in vitro experimental data were integrated to generate realistic computer simulations representative of misdirected tackles. MRI images were used to inform the creation of a musculoskeletal model. In vivo kinematics and neck muscle excitations were collected during lab-based staged tackling of the player. Impact forces were collected in vitro using an instrumented anthropometric test device during experimental simulations of rugby collisions. Experimental kinematics and muscle excitations were prescribed to the model and impact forces applied to seven skull locations (three cranial and four lateral). To examine the effects of technique on intervertebral joint loads the model's neck angle was altered in steps of 5° about each rotational axis resulting in a total of 1,623 experimentally informed simulations of misdirected tackles.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 52 - 52
1 Mar 2021
Zaribaf F Gill H Pegg E
Full Access

Abstract

Objectives

Oil-based fluids can be used to enhance the properties of polyethylene materials. For example, vitamin E infused polyethylene has a superior oxidation resistance and Lipiodol infused polyethylene has an enhanced X-ray attenuation. The aim of this study was to evaluate the long-term influence of oily fluid on the chemical, physical and tensile properties of polyethylene.

Methods

An accelerated ageing procedure (an elevated temperature (80°C) for four weeks in air1) was used to investigate the oxidative stability (ASTM F2012-17)2, tensile (ISO 527)3 and thermal properties4 of oil treated polyethylene (n=5, GUR 1050, Celanese, Germany)and compared with clinically used polyethylene controls (oil-free standard and thermally treated polyethylene). All the experiments were performed on aged and unaged specimens in accordance to international standards and compared to currently available literature. A Kruskal-Wallis test was performed using a custom MATLAB code (R2017a, USA); with p < 0.05 considered statistically significant.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 38 - 38
1 Jan 2019
Hernandez BA Gill HS Gheduzzi S
Full Access

Several specimen specific vertebral (VB) models have been proposed in the literature; these replicate the typical set-up of a vertebral body mounted in bone cement and subject to a compressive ramp. VB and cement geometries are obtained from micro-CT images, the cement is typically assigned properties obtained from the literature while VB properties are inferred from the Hounsfield units- where the conversion factor between grayscale data and Young's modulus is optimised using experimental load-displacement data. Typically this calibration is performed on VBs dissected from the same spines as the study group. This, alongside the use of non-specific cement properties, casts some doubts on the predictivity of the models thus obtained. The predictivity of specimen specific FE models was evaluated in this study.

VBs obtained from three porcine cervical segments (C2-C6) were stripped of all soft tissues, potted in bone cement and subject to a compressive loading ramp. A speckle pattern was applied to the anterior part of the specimen for DIC imaging. Specimen specific FE models were constructed from these specimens and a conversion factor between grayscale and material properties was optimised. Cement properties were assigned based on literature data. VBs from a further cervical spine (C2-C7) were subject to the same experimental protocol. In this case, the models generated from microCT images the material properties of bone were assigned based on the average conversion factor obtained previously. The predicted load-displacement behaviour thus obtained was compared to experimental data. Generally, poor agreement was found between overall load-displacement. The use of generic cement properties in the models was found to be partly responsible for this. When the load displacement behaviour of the VB was studied in isolation, good agreement within one standard deviation was found with 4 out of 6 models showing good correlation between simulation and DIC data.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 18 - 18
1 Jan 2019
Boyd S Silvestros P Hernandez BA Cazzola D Preatoni E Gill HS Gheduzzi S
Full Access

Digital image correlation (DIC) is rapidly increasing in popularity in biomechanical studies of the musculoskeletal system. DIC allows the re-construction of full field displacement and/or strain maps of the surface of an object. DIC systems typically consist of two cameras focussing on the same region of interest. This constrains the angle between the cameras to be relatively narrow when studying specimens characterised by complex geometrical features, giving rise to concerns on the accuracy of the out of plane estimates of movement.

The aim of this research was to compare the movement profiles of bony segments measured by DIC and by an optoelectronic motion capture system.

Five porcine cervical spine segments (C2-C6) were obtained from the local butcher. These were stripped of all anterior soft tissues while the posterior structures were left intact. A speckle pattern was applied to the anterior aspect of the specimens, while custom made infrared clusters were rigidly attached to the 3 middle vertebral bodies (C3-C5). The specimens were mounted in a custom made impact rig which fully constrained C6 but allowed C2 to translate in the axial direction of the segment. Images were acquired at 4kHz, both for the DIC (Photron Europe Ltd, UK) and motion capture cameras (Qualisys Oqus 400, Sweden). The in-plane and out of plane displacements of each of the VBs were plotted as a function of time and the similarity between the curves thus obtained was analysed using the SPM1D technique which allowed a comparison to be made in terms of t-statistics. No statistical differences were found between the two techniques in all axis of movement, however the out of plane movements were characterised by higher variance which is attributed to the uncertainty arising from the near parallel positioning of the cameras in the experimental set-up.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 35 - 35
1 Jan 2019
Zaribaf F Gill HR Pegg E
Full Access

Ultra-high molecular weight polyethylene (UHMWPE) is a commonly used as bearing material in joint replacement devices. UHMWPE implants can be hard to see on a standard X-ray because UHMWPE does not readily attenuate X-rays. Radiopaque UHMWPE would enable direct imaging of the bearing both during and after surgery, providing in vivo assessment of bearing position, dislocation or fracture, and potentially a direct measure of wear. The X-ray attenuation of UHMWPE was increased by diffusing an FDA approved contrast agent (Lipiodol) into UHMWPE parts (Zaribaf et al, 2018). The aim of this study was to evaluate the optimal level of radiopacity for a UHMWPE bearing.

Samples of un-irradiated medical grade UHMWPE (GUR 1050) were machined into 4mm standard medium Oxford Unicompartmental bearings. Samples were immersed in Lipiodol Ultra Fluid (Guerbert, France) at elevated temperatures (85 °C, 95 °C and 105 °C) for 24 h to achieve three different levels of radiopacity.

A phantom set-up was used for X-ray imaging; the phantom contained two perspex rods to represent bone, with the metallic tibial tray and polyethylene bearing fixed to the end of one rod and the metallic femoral component fixed to the other rod. Radiographs of the samples were taken (n=5) with the components positioned in full extension. To ensure consistency, the images of all the samples were taken simultaneously alongside an untreated part.

The results of our ongoing study demonstrate that the radiopacity of UHMWPE can be enhanced using Lipiodol and the parts are visible in a clinical radiographs. The identification of the optimal treatment from a clinical perspective is ongoing; we are currently running a survey with clinicians to find the consensus on the optimal radiopacity taking into account the metallic components and alignment. Future work will involve a RSA study to assess the feasibility of measuring wear directly from the bearing.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 5 - 5
1 Jan 2019
Silvestros P Boyd S Hernandez BA Gheduzzi S Gill HS Preatoni E Cazzola D
Full Access

Head collisions in sport can result in catastrophic cervical spine injuries. Musculo-skeletal (MSK) modelling can help analyse the relationship between players' motion, external loading and internal stresses that lead to injury. However, the literature lacks sport specific MSK models. In automotive research the intervertebral disc behaviour has been represented as viscoelastic elements (“bushing”), whose stiffness and damping parameters are often estimated under quasi-static conditions and may lack validity in dynamic impacts. The aim of this study was to develop a validated cervical spine model for axial impacts for future use in the analysis of head-first rugby collisions.

A drop test rig was used to replicate a sub-catastrophic axial head impact. A load of 80 N from 0.5 m was applied to the cranial aspect of a C2-C6 porcine spinal specimen mounted in the neutral position. The 3D motion of C3-C5 vertebras (4 kHz) and the cranial axial load (1 MHz) were measured via motion capture (Qualysis, Sweden) and a uniaxial load cell (RDP Electronics Ltd, UK). Specimen specific models were created in NMSBuilder and OpenSim after the vertebrae geometries were obtained from the segmentation of micro-CT images of the specimens. The compressive viscoelastic properties of four vertebral joints (C2-C3 through to C5-C6) were optimised via a Genetic Algorithm (MATLAB v2016b, The Mathworks Inc) to minimise tracking errors.

The optimisation converged to a solution of 140–49000 kN/m and 2000–8000 Ns/m for stiffness and damping respectively (RMSE=5.1 mm). Simulated joint displacements ranged between 0.09 – 1.75 mm compared to experimental 0.1 – 0.8 mm.

Optimal bushing parameters were higher than previously reported values measured through quasi-static testing. Higher stiffness and damping values could be explained by the higher-dynamics nature of the event analysed related to a different part of the non-linear intervertebral disc load-displacement curve.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 103 - 103
1 Nov 2018
Gill RHS
Full Access

Metal on metal hip replacements have been one of worst failures in recent years in terms of orthopaedic implants. Some of these devices have had catastrophic failure rates, with reports of 48% failure at 6 years. The failure of these devices has led to considerable suffering, pain and reduction in quality of life; consequently, they have given rise to high costs and multi-million-dollar legal cases. This talk will describe the history of the current metal on metal failure and discuss some of the reasons why might have occurred. It will also consider the reasons that wear debris arising from the trunnion is worse in terms of biological activity then that arising from the bearing surfaces.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 101 - 101
1 Nov 2018
George A Ellis M Gill R
Full Access

It is well documented that implant loosening rate in sickle cell disease patients is higher than that seen in patients with hip arthroplasty from other indications. The Hypoxic inducible factor(HIF) - is activated in the microcellular hypoxic environment and this through a cascade of other enzymatic reactions promotes the activity of other factors and further help enhance angiogenesis and osteogenesis. The aim of this study was to investigate and propose a potential model for investigating osseointegration in a hypoxic microcellular environment using osteoblasts(MG63).

Human MG63 osteoblastic cells were cultured under normoxia and hypoxic conditions (20%; and 1% oxygen saturation) for 72 hours under two different condition- with and without cobalt chloride. The samples cultured under normoxic condtions without cobalt chloride acted as control. Using qualitative polymerase chain reaction-(qPCR) - HIF expression was assessed under the above conditions in relation to the control.

The results showed there was significant expression of the HIF 1 alpha protein under hypoxic condition with cobalt chloride in comparison with the control samples- all at 72hours incubation. Mann-Whitney U test was used to deduce level of significance of fold change.(p=0.002; <0.05). This was deemed as being a significant difference in the level of expression of HIF compared to the control.

The results show that the hypoxic inducible factor can be expressed using the above tested

experimental invitro-model with significant results which can be a foundation for further research into improving hip implant prosthesis design to help enhance osseo-integration in sickle cell disease patient with AVN.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 10 - 10
1 Apr 2018
Gosiewski J Gheduzzi S Gill R
Full Access

Introduction

The THR is the second most successful and cost-effective surgical procedure of all time. Data shows that hip cup failure is a significant problem. The aim of this study is to improve methods of cemented cup fixation through validation experiments and FEA.

Methods

Five Sawbones composite pelves with cemented UHMWPE cups were tested. Each pelvis was instrumented with triaxial strain gauges at four locations of predicted high strain. Each sample (n = 5) was bolted at the sacroiliac joint in a uniaxial testing machine. A load of 500 N was applied in the direction of the peak force during normal walking, for five repetitions. The directional surface strains were used to evaluate the equivalent strain. Specimen specific finite element models were developed based on CT scan data using ScanIP. Each mesh consisted of an average of 2.5 million linear tetrahedral elements and was solved in ANSYS.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 33 - 33
1 Apr 2018
Hernandez BA Blackburn J Cazzola D Holsgrove TP Gill H Gheduzzi S
Full Access

Cervical spine fractures are frequent in impact sports, such as rugby union. The consequences of these fractures can be devastating as they can lead to paraplegia, tetraplegia and death. Many studies have been conducted to understand the injury mechanisms but the relationship between player cervical spine posture and fracture pattern is still unclear. The aim of this study was to evaluate the influence of player cervical spine posture on fracture pattern due to an impact load. Nineteen porcine cervical spines (C2 to C6) were dissected, potted in PMMA bone cement and mounted in a custom made rig. They were impacted with a mean load of 6 kN. Eight specimens were tested in an axial position, five in flexion and six in lateral bending. All specimens were micro-CT imaged (Nikon XT225 ST Scanner, Nikon Metrology, UK) before and after the tests, and the images were used to assess the fracture patterns. The injuries were classified according to Allen-Ferguson classification system by three independent observers. The preliminary results showed that the main fracture modalities were consistent with those seen clinically. The main fractures for the axial orientation were observed in C5-C6 level with fractures on the articular process and endplates. These findings support the concept that the fracture patterns are related to the spine position and give an insight for improvements on sports rules in order to reduce the risk of injury.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 95 - 95
1 Apr 2018
Polak-Kraśna K MacLeod A Fletcher J Whitehouse M Preatoni E Gill H
Full Access

The screw fastening torque applied during bone fracture fixation has a decisive influence on subsequent bone healing. Insufficient screw tightness can result in device/construct instability; conversely, excessive torques risk damaging the bone causing premature fixation failure. This effect is even more prominent in osteoporotic bone, a condition associated annually with almost 9 million fractures worldwide. During fracture fixation, screw tightening torque is applied using subjective feel. This approach may not be optimal for patient”s recovery, increasing risk of fixation failure, particularly in osteoporotic bone, and potentially require revision surgical interventions.

Besides bone density, various factors influence the performance of screw fixation. These factors include bone geometry, cortical thickness and time-dependant relaxation behaviour of the bone. If the influence of screw fastening torque on the bone and relationships between these factors was better understood, the surgical technique could be optimised to reduce the risk of complications.

Within this study, we developed an axisymmetric finite element (FE) model of bone screw tightening incorporating viscoelastic behaviour of the cortical bone such as creep and stress relaxation. The model anticipated time-dependent behaviour of the bone for different bone thickness and density after a typical bone fixation screw had been inserted. The idealised model has been developed based on CT scans of bones with varying densities and inserted screws. The model was validated through a series of experiments involving bovine tibiae (4–5 months) to evaluate the evolution of surface strains with time (Ncorr v1.2). Stress distribution was assessed in photoelastic experiments using acrylic analogues. Relaxation tests have been performed in aqueous environment for up to 48 hours to ensure the relaxation would be complete. The creep behaviour (maximum principal strain) was compared against computational predictions. Our early simulations predicted relaxation strains on the surface of the bone to be 1.1% within 24 hours comparing favourably to 1.3% measured experimentally. Stress distribution patterns were in agreement with photoelastic results.

Using experimentally derived viscoelastic properties, the model has the potential to predict creep and stress relaxation patterns after screw insertion with different fastening torques for bones with varying density and geometry. We aim to develop this into a planning tool providing guidance to surgeons for optimal tightening when using screw fixation, particularly in reduced quality bone.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 72 - 72
1 May 2017
MacLeod A Rose H Gill H
Full Access

Background

A large proportion of the expense incurred due to hip fractures arises due to secondary factors such as duration of hospital stay and additional theatre time due to surgical complications. Studies have shown that the use of intramedullary (IM) nail fixation presents a statistically higher risk of re-fracture than plating, which has been attributed to the stress riser at the end of the nail. It is not clear, however, if this situation also applies to unstable fractures, for which plating has a higher fixation failure rate. Moreover, biomechanical studies to date have not considered newer designs of IM nails which have been specifically designed to better distribute weight-bearing loads. This aim of this experimental study was to evaluate the re-fracture risk produced by a newer type of nailing system compared to an equivalent plate.

Methods

Experimental testing was conducted using fourth generation Sawbones composite femurs and X-Bolt IM hip nail (n=4) and fracture plate (n=4) implants. An unstable pertrochanteric fracture pattern was used (AO classification: 31-A1 / 31-A2). Loading was applied along the peak loading vector experienced during walking, up to a maximum load of 500N. The risk of re-fracture was evaluated from equivalent strains measured using four rosette strain gauges on the surface of the bone at known stress riser locations.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 52 - 52
1 May 2017
MacLeod A Rose H Gill H
Full Access

Background

Numerical modelling using Finite Element (FE) Analysis has become ubiquitous in orthopaedic biomechanics, with both commercial and freely available packages widely used. Three FE packages in particular have gained popularity: Abaqus (Simulia); Ansys (ANSYS, Inc.) and FEBio (University of Utah). Although FEBio is now well established, its developers advise that comparisons should be made against more extensively tested software before trusting its results for specific problems. The aim of the study to conduct a comparison of mesh convergence and to provide validated open-source models of the femur for use all three FE packages.

Methods

Three-dimensional FE models of the femur were created in Abaqus. To ensure that all aspects of the models were identical, custom scripts were developed to import the models into other packages. Mesh convergence studies were conducted for each solver using seven mesh densities for linear tetrahedral elements (up to 2 million). Experimental validation used fourth generation Sawbones composite femurs (n=8) with surface strains measured at four locations. The loading applied at the hip was the averaged peak joint reaction force during walking (Bergman et al); experimentally, this loading vector was used for a reduced load of 500N.